Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(17): 11866-11875, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38621677

ABSTRACT

The available methods of chemical synthesis have arguably contributed to the prevalence of aromatic rings, such as benzene, toluene, xylene, or pyridine, in modern pharmaceuticals. Many such sp2-carbon-rich fragments are now easy to synthesize using high-quality cross-coupling reactions that click together an ever-expanding menu of commercially available building blocks, but the products are flat and lipophilic, decreasing their odds of becoming marketed drugs. Converting flat aromatic molecules into saturated analogues with a higher fraction of sp3 carbons could improve their medicinal properties and facilitate the invention of safe, efficacious, metabolically stable, and soluble medicines. In this study, we show that aromatic and heteroaromatic drugs can be readily saturated under exceptionally mild rhodium-catalyzed hydrogenation, acid-mediated reduction, or photocatalyzed-hydrogenation conditions, converting sp2 carbon atoms into sp3 carbon atoms and leading to saturated molecules with improved medicinal properties. These methods are productive in diverse pockets of chemical space, producing complex saturated pharmaceuticals bearing a variety of functional groups and three-dimensional architectures. The rhodium-catalyzed method tolerates traces of dimethyl sulfoxide (DMSO) or water, meaning that pharmaceutical compound collections, which are typically stored in wet DMSO, can finally be reformatted for use as substrates for chemical synthesis. This latter application is demonstrated through the late-stage saturation (LSS) of 768 complex and densely functionalized small-molecule drugs.


Subject(s)
Rhodium , Catalysis , Rhodium/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/chemical synthesis , Hydrogenation , Molecular Structure
2.
Article in English | MEDLINE | ID: mdl-37804570

ABSTRACT

Melamine is added illegally to milk and dairy products to increase the amount of apparent protein. This organic nitrogen rich chemical compound has been of great challenge in food safety based on its adverse effect on health. Therefore, the extraction and determination of melamine from milk is necessary. Recently, ionic liquid (ILs) as solvent usage has been noticeable for low melting point, low toxicity, high thermal stability, and high extraction capabilities in a wide range of separation processes. ILs are introduced as organic-inorganic salts and green solvents in microextraction preparation. Therefore, in this study, three ionic liquids ([C6mim][NTF2], [C4mim][NTF2] and [C2mim][NTF2] ILs) were prepared and employed as an extraction solvent in dispersive liquid-liquid microextraction (DLLME) of melamine from milk samples followed by HPLC-UV. The selected ILs were designed using three types of alkyl-imidazolium (as the short organic cations) and bis (tri fluoro methyl sulfonyl) imide as anion and characterized by ATR-FTIR spectra, carbon, and hydrogen Nuclear Magnetic Resonance spectroscopy (H&C-NMR) and energy-dispersive X-ray spectroscopy (EDX). These techniques confirmed the formation of functional groups, the structure of hydrogen and carbon atoms, and various elements of ionic bond between imidazolium and bis (tri fluoro methyl sulfonyl) imide. In the next step, the effect of significant parameters, including type and volume of ILs, adsorption time, pH of the sample solution, and sample volume, were optimized. Under the optimal conditions, the limits of detection (LOD), limits of quantification (LOQ), and linearity range were obtained 63.64 µg kg-1, 210.03 µg kg-1, and 210.03-1000 µg kg-1, respectively, for as prepared [C6mim][NTF2] as the best ILs. Notably, the achieved LOQ was lower than the maximum residue level (MRL) for the melamine residue in dairy products. Eventually, the proposed method was applied to detect melamine in milk samples, and the relative recoveries were examined as 79.6-105.0 %.


Subject(s)
Ionic Liquids , Liquid Phase Microextraction , Animals , Solvents/chemistry , Ionic Liquids/chemistry , Chromatography, High Pressure Liquid/methods , Milk , Imides/chemistry , Liquid Phase Microextraction/methods , Limit of Detection , Carbon , Hydrogen
3.
J Food Sci Technol ; 60(11): 2802-2812, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37711576

ABSTRACT

In the present study, a magnetic nano gel as the sorbent which is the combination of octatonic acid: cumarin as eutectic solvent and Fe3O4@SiO2 was introduced as the sorbent in ultrasound-assisted dispersive µ-solid phase extraction process coupled with high performance liquid chromatography with photo diode array detector for simultaneous separation and determination of tetracyclines residues in food samples. FT-IR, SEM, VSM were used for the characterization of the synthetized magnetic nano gel. Under obtained optimum conditions, the obtained linear ranges were 1.5-500 (µg L-1), 2.5-750 (µg L-1), 2-750 (µg L-1), and 2.5-500 (µg L-1) for tetracycline, oxytetracycline, chlortetracycline, and doxycycline, respectively. Moreover, the below level of quantification (BLQ) (based on S/N = 3) of 0.47 µg L-1, 0.11 µg L-1, 0.85 µg L-1, 0.66 µg L-1, 0.81 µg L-1 and the limit of quantification (based on S/N = 10) of 1.61, 2.74, 2.23 (µg L-1), and 2.66 were achieved for tetracycline, oxytetracycline, chlortetracycline, and doxycycline, respectively. The intra-day and inter-day precision (%) of the procedure were less than 3.2 and 3.8, respectively. The recoveries over 95% confirmed high sufficiency of the proposed method for application in complex matrices such as honey, milk, and egg. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05798-w.

4.
Food Sci Nutr ; 11(9): 5396-5408, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37701214

ABSTRACT

This study investigated the physicochemical properties and polyphenol composition of extra virgin olive oils (EVOOs) extracted from three olive cultivars. The investigated cultivars were Arbequina, Koroneiki, and Manzanilla, grown in Olive Research Station in Rudbar county, Gilan province, Iran, at three ripening stages. Several parameters were analyzed, including peroxide and acidity values, unsaponifiable matter, oxidative stability, total aliphatic alcohols, fatty acids (FAs), sterols, and triacylglycerol composition. The results showed that as maturity increased, parameters such as oil content, acidity value, and iodine value, rise, while parameters including peroxide value, oxidative stability, aliphatic alcohols, and unsaponifiable matter decreased (p < .05). The saponification value was slightly reduced in the developing ripening process (p > .05). The MUFA/PUFA ratio and total sterol content declined during the olive ripening stages (p < .05). The triterpenes decreased in Arbequina and Koroneiki cultivars but increased in Manzanilla cultivar during the maturity stages. According to the data, oleuropein decreased while oleuropein aglycone, oxidized aldehyde, and hydroxylic form of oleuropein increased for all EVOOs during maturation. Apigenin, quercetin, ligstroside aglycone, aldehyde and hydroxylic form, ferulic acid, caffeic acid, and catechin decreased during the ripening of fruits (p < .05). The main triglycerides were triolein (OOO), palmitodiolein (POO), dioleolinolein (OOL), and palmitooleolinolein (PLO) in all EVOOs. In addition, the olive cultivar and harvesting date influence the physicochemical properties and polyphenol composition of EVOOs extracted from olive varieties grown in one region. In conclusion, the results can present helpful information to determine the optimum maturity stage for the investigated olive cultivars.

5.
Food Sci Nutr ; 11(2): 1051-1058, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36789035

ABSTRACT

In this study, physicochemical and quality properties, fatty acid composition, and triglyceride composition of Iranian Kurdish butter oil (IKBO) obtained from yogurt drink (doogh) butter were investigated. Local doogh butter, prepared from cow's (CIKBO) and ewe's milk (EIKBO), was utilized as the raw material for this purpose. The free fatty acids (FFA) and peroxide values of IKBOs of the cow (CIKBO) and ewe (EIKBO) were obtained at 0.41 ± 0.01 and 0.39 ± 0.01 (g Oleic acid 100/g oil), and 1.32 ± 0.00 and 1.35 ± 0.00 (meq O2 kg/oil), respectively. The amounts of saturated fatty acids (SFAs): 70.27 ± 0.62 and 72.13 ± 0.84 (g/100 g), monounsaturated fatty acids (MUFAs): 19.37 ± 0.74 and 20.56 ± 0.97 (g/100 g), and polyunsaturated fatty acids (PUFAs): 1.22 ± 0.12 and 2.75 ± 0.38 (g/100 g) were obtained in CIKBO and EIKBO, respectively. The significant majority of the fatty acids (FAs) in the examined CIKBO and EIKBO were myristic (CIKBO: 13.76 ± 0.02 (g/100 g) and EIKBO: 14.83 ± 0.07 (g/100 g)), palmitic (CIKBO: 33.14 ± 0.28 (g 100/g) and EIKBO: 31.86 ± 0.02 (g/100 g)), stearic (CIKBO: 8.27 ± 0.06 (g/100 g) and EIKBO: 7.95 ± 0.06 (g/100 g)), capric (CIKBO: 4.83 ± 0.03 (g/100 g) and EIKBO: 6.75 ± 0.01 (g/100 g)), and oleic acids (CIKBO: 15.37 ± 0.12 (g/100 g) and EIKBO: 17.83 ± 0.02 (g/100 g)). The average of conjugated linoleic acid (CLA) content in EIKBO (2.20 ± 0.22 (g/100 g)) was higher than that in CIKBO (0.92 ± 0.25 (g/100 g)) (p < .05). Therefore, EKIBO is considered the superior natural supply of CLA.

6.
Chemosphere ; 320: 138065, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36754307

ABSTRACT

Pesticides are a large group of pristine organic contaminants, which are widely discharged into environmental water due to agricultural activities. Hence, extraction, determination, and removal of pesticides from water resources are necessary for human health. In this study, novel adsorbent was developed based on three-dimensional magnetic graphene coated with gold nanoparticles (3D-MG@AuNPs) for extraction of chlorpyrifos, dicrotophos, fenitrothion, and piperophos as four specific organophosphorus pesticides (OPPs) from wastewater and tap water samples. The proposed nanocomposite was characterized; FTIR and EDX are performed for the expected functional groups and elemental analysis, SEM showed the unique and spherical AuNPs are well dispersed over graphene sheets. In this investigation, the important parameters that have effect on the extraction efficiency, including the desorbing solvent, desorbing solvent volume, vortex time, the extraction time, adsorbent dosage, pH of sample solutions, and salt effect were evaluated. In conclusion, the measured amounts of the chosen OPPs were determined using the gas chromatography microelectron capture (µECD-GC) method. Limits of quantification (S/N ratio of 10) and detection (S/N ratio of 3) were attained at concentrations of 0.26-0.43 µg.L-1 and 0.08-0.14 µg.L-1, respectively. According to the results of the investigations, the synthesized 3D-MG@AuNPs did not require any complicated sample preparation methods; therefore, it is a very good choice for solid magnetic phase extraction studies.


Subject(s)
Chlorpyrifos , Graphite , Insecticides , Metal Nanoparticles , Pesticides , Humans , Water/chemistry , Pesticides/analysis , Graphite/chemistry , Gold , Organophosphorus Compounds/analysis , Metal Nanoparticles/analysis , Insecticides/analysis , Chlorpyrifos/analysis , Solvents/chemistry , Solid Phase Extraction/methods , Magnetic Phenomena , Limit of Detection
7.
Environ Res ; 216(Pt 1): 114416, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36181897

ABSTRACT

In this study, an adsorbent made of alginate (Alg) caged magnesium sulfide nanoparticles (MgS) microbeads were used to treat lead ions (Pb2+ ions). The MgS nanoparticles were synthesized at low temperatures, and Alg@MgS hydrogel microbeads were made by the ion exchange process of the composite materials. The newly fabricated Alg@MgS was characterized by XRD, SEM, and FT-IR. The adsorption conditions were optimized for the maximum removal of Pb2+ ions by adjusting several physicochemical parameters, including pH, initial concentration of lead ions, Alg/MgS dosage, reaction temperature, equilibration time, and the presence of co-ions. This is accomplished by removing the maximum amount of Pb2+ ions. Moreover, the adsorbent utilized more than six times with a substantial amount (not less than 60%) of Pb2+ ions was eliminated. Considering the ability of sodium alginate (SA) for excellent metal chelation and controlled nanosized pore structure, the adsorption equilibrium of Alg@MgS can be reached in 60 min, and the highest adsorption capacity for Pb2+ was 84.7 mg/g. The sorption mechanism was explored by employing several isotherms. It was found that the Freundlich model fits the adsorption process quite accurately. The pseudo-second-order model adequately described the adsorption kinetics.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Water Purification , Alginates/chemistry , Wastewater , Magnesium , Microspheres , Lead , Water Pollutants, Chemical/analysis , Spectroscopy, Fourier Transform Infrared , Adsorption , Kinetics , Sulfides , Hydrogen-Ion Concentration
8.
Article in English | MEDLINE | ID: mdl-36231997

ABSTRACT

The drop immerses calcium chloride aqueous solution was utilized to prepare the zero valent iron-doped polyethersulfone beads (PES/ZVI) for the efficient removal of arsenic from apatite-soil treated waters. The proposed beads can assist in promoting uptake efficiency by hindering ZVI agglomeration due to a high porosity and different active sites. The PES/ZVI beads were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and vibrating sample magnetism (VSM). The main objective of this study was to investigate the function of new PES/ZVI beads with an increased removal efficiency for the remediation of arsenic ions from the apatite-soil treated waters. A maximum adsorption removal of 82.39% was achieved when the experiment was performed with 80 mg of adsorbent for a contact time of 180 min. Based on the results, a removal efficiency >90% was obtained after 300 min of shaking time with an arsenic concentration of 20 mg·L-1. The experimental process was fitted with the Langmuir model due to the high R2 (0.99) value compared to the Freundlich model (0.91) with an adsorption capacity of 41.32 mg·g-1. The adsorption process speed was limited by pseudo-second-order (R2 = 0.999) and the adsorption mechanism nature was endothermic and physical.


Subject(s)
Arsenic , Water Pollutants, Chemical , Adsorption , Apatites , Arsenic/analysis , Calcium Chloride , Hydrogen-Ion Concentration , Ions , Iron/chemistry , Kinetics , Magnetic Phenomena , Soil , Spectroscopy, Fourier Transform Infrared , Water/analysis , Water Pollutants, Chemical/analysis
9.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296765

ABSTRACT

In this study, a magnetic solid-phase extraction method was developed based on multi-wall carbon nanotubes decorated by magnetic nanoparticles (Fe3O4) and cadmium sulfide nanoparticles (Fe3O4@MWCNT-CdS) for trace extraction of cefixime and tetracycline antibiotics from urine and drug company wastewater. The adsorbent features were characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), and energy dispersive X-ray analysis (EDX). Various effective parameters on the sorption and desorption cycle, such as sorption time, the mass of adsorbent, pH, salt addition, and material ratio, were investigated and optimized. The data were evaluated using isotherm models, and experimental data were well-fitted to both Langmuir (R2 = 0.975) and Freundlich (R2 = 0.985) models. Moreover, kinetic of reaction was agreement with pseudo-second-order (R2 = 0.999) as compared pseudo-first-order (R2 = 0.760). The maximum adsorption capacity for tetracycline and cefixime was achieved at 116.27 and 105.26 mg·g-1, respectively. Hence, the prepared adsorbent can be used as an alternative material for enhanced determination of pharmaceutical substances in biological fluids.

10.
Polymers (Basel) ; 14(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36080757

ABSTRACT

A new solid phase micro extraction (SPME) fiber coating composed of electrospun polyethylene terephthalate (PET) nanofibrous mat doped with superhydrophobic nanosilica (SiO2) was coated on a stainless-steel wire without the need of a binder. The coating was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR) techniques and it was used in headspace-SPME of 16 organochlorine pesticides in water samples prior to gass chromatography micro electron capture detector (GC-µECD) analysis. The effects of main factors such as adsorption composition, electrospinning flow rate, salt concentration, extraction temperature, extraction time, and desorption conditions were investigated. Under the optimum conditions, the linear dynamic range (8−1000 ng L−1, R2 > 0.9907), limits of detection (3−80 ng L−1), limits of quantification (8−200 ng L−1), intra-day and inter-day precisions (at 400 and 1000 ng L−1, 1.7−13.8%), and fiber-to-fiber reproducibility (2.4−13.4%) were evaluated. The analysis of spiked tap, sewage, industrial, and mineral water samples for the determination of the analytes resulted in satisfactory relative recoveries (78−120%).

11.
Polymers (Basel) ; 14(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145908

ABSTRACT

Chlorobenzenes (CBs) are persistent and potentially have a carcinogenic effect on mammals. Thus, the determination of CBs is essential for human health. Hence, in this study, novel polyurethane−polysulfone/calix[4]arene (PU-PSU/calix[4]arene) nanofibers were synthesized using an electrospinning approach over in-situ coating on a stainless-steel wire. The nanosorbent was comprehensively characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques. The SEM analysis depicted the nanofiber's unique morphology and size distribution in the range of 50−200 nm. To determine the levels of 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene, and 1,2,3,4-tetrachlorobenzene in water samples, freshly prepared nanosorbent was employed using headspace-solid phase microextraction (HS-SPME) in combination with gas chromatography micro electron capture detector (GC-µECD). Other calixarenes, such as sulfonated calix[4]arene, p-tert-calixarene, and calix[6]arene were also examined, and among the fabricated sorbents, the PU−PSU/calix[4]arene showed the highest efficiency. The key variables of the procedure, including ionic strength, extraction temperature, extraction duration, and desorption conditions were examined. Under optimal conditions, the LOD (0.1−1.0 pg mL−1), the LDR (0.4−1000 pg mL−1), and the R2 > 0.990 were determined. Additionally, the repeatability from fiber to fiber and the intra-day and inter-day reproducibility were determined to be 1.4−6.0, 4.7−10.1, and 0.9−9.7%, respectively. The nanofiber adsorption capacity was found to be 670−720 pg/g for CBs at an initial concentration of 400 pg mL−1. A satisfactory recovery of 80−106% was attained when the suggested method's application for detecting chlorobenzenes (CBs) in tap water, river water, sewage water, and industrial water was assessed.

12.
Chemosphere ; 307(Pt 2): 135809, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35934100

ABSTRACT

Herein, magnetic polyaniline was modified with lanthanum nanoparticles (MPANI@La) as adsorbent, aiming to the treatment of high phosphate-containing aquatic solutions. High valent lanthanum doped with polyaniline was a promising adsorbent to uptake phosphate ions with possible electrostatic interaction and cation exchange process. The functional groups, composition, surface morphology, and magnetic property of the adsorbent were investigated using Fourier Transform-Infrared Spectroscopy (FTIR), Energy Dispersive X-ray (EDX), Scanning Electron Microscopic (SEM), and Vibrating Sample Magnetometer (VSM), respectively. During the experimental process, MPANI@La has removed phosphate ions from water >90%, with 80 mg adsorbent, and shaking for 150 min at room temperature. In this regard, the process was fitted with the Pseudo-second-order kinetic model (R2 > 0.999) and the Langmuir isotherm (R2 > 0.99). The proposed nanoparticles provided an appropriate adsorption capacity (qm) of 45.24 mg.g-1 at pH 4 for phosphate ions. Besides, the adsorbent can be used with an efficiency of 92.49% up to three times that reduced to 52.89% after ten times. In addition, the adsorption process was justified by thermodynamics which confirmed the proposed adsorption mechanism. Hence, the models were provided surface adsorption, monolayer pattern, and the physical mechanism of the phosphate removal process using MPANI@La. Hence the proposed adsorbent can be used as an alternative adsorbent in environmental water remediation.


Subject(s)
Lanthanum , Water Pollutants, Chemical , Adsorption , Aniline Compounds , Hydrogen-Ion Concentration , Kinetics , Lanthanum/chemistry , Magnetic Phenomena , Phosphates/chemistry , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water , Water Pollutants, Chemical/chemistry
13.
Article in English | MEDLINE | ID: mdl-35793387

ABSTRACT

A simple, fast, and efficient method of vortex assisted magnetic dispersive solid phase extraction for separation and pre-concentration of erythromycin in chicken samples prior to high LC-UV determination has been developed. The novel heterogeneous CeZrO2 nanoparticles doped magnetic graphene oxide, for use as an efficient nanosorbent, was synthetised and applied for the adsorption of erythromycin. The synthetised nanosorbent was characterised using both Fourier-transform infra-red (FT-IR) and energy dispersive X-Ray (EDX) spectroscopy together with field emission scanning electron microscopy-EDX. To obtain the best extraction condition and maximum extraction efficiency of erythromycin, the effect of important parameters including pH, amount of sorbent, vortexing time, ionic strength, sample volume, and desorption conditions were investigated. At optimum conditions, a linear range of 0.25-300 µg kg-1, LOD (S/N = 3) of 0.079 µg kg-1, and LOQ (S/N = 10) of 0.270 µg kg-1 were obtained. The precision of the method was established as having an RSD (%) at 100 µg kg-1 of erythromycin for seven replicates of 2.6% and 3.2% for the intra-day and the inter-day, respectively. Recoveries over 94.0% confirmed a high capability of the proposed method for separation and determination of erythromycin residues in chicken being one of the most important animal products.


Subject(s)
Graphite , Magnetite Nanoparticles , Adsorption , Animals , Chickens , Erythromycin , Graphite/chemistry , Limit of Detection , Magnetic Phenomena , Magnetite Nanoparticles/chemistry , Solid Phase Extraction/methods , Spectroscopy, Fourier Transform Infrared
14.
Environ Res ; 214(Pt 2): 113831, 2022 11.
Article in English | MEDLINE | ID: mdl-35841973

ABSTRACT

The current study presents a viable and straightforward method for synthesizing titanium lanthanum three oxide nanoparticles (TiLa) and their decoration onto the ferrous graphene oxide sheets to produce FeGO-TiLa as efficient magnetic adsorbent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and vibration sample magnetometer (VSM) were used to evaluate the physical and chemical properties of the produced nanocomposites. The FeGO-TiLa was used to enhance the removal of lead ions from aqueous solution. The FeGO-TiLa nanocomposite exhibited a much higher removal efficiency (93%) for lead ions than pure TiLa nanoparticles (81%) and magnetic graphene oxide (74%). The influence of FeGO-TiLa dosage, contact time, solution pH, solution temperature, and starting quantity on the lead ions was evaluated and adjusted. The investigations demonstrated that a pH 6 with 40 mg adsorbent resulted in >91% removal of lead ions at ambient temperature after 120 min. Isotherm models were used to analyze experimental results, and Langmuir model fitted the data well as compared Freundlich model with a maximum adsorption capacity of 109.89 mg g-1. Kinetic and studies are performed the lead adsorption over FeGO-TiLa follow pseudo-second-order rate. Langmuir and Free energy suggested the lead ions uptake with FeGO-TiLa was monolayer and physical adsorption mechnaism, respectively. Finally, the FeGO-TiLa nanocompoiste can be used as an alternative adsorbent for water remediation.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Adsorption , Graphite , Hydrogen-Ion Concentration , Ions , Kinetics , Lanthanum , Lead , Magnetic Phenomena , Nanocomposites/chemistry , Oxides , Spectroscopy, Fourier Transform Infrared , Titanium , Water , Water Pollutants, Chemical/analysis
15.
Chemosphere ; 300: 134461, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35395264

ABSTRACT

This study evaluated the synthesis of novel binary functionaladsorbent based on sporopollenin, magnetic nanoparticles, and polyaniline to produce MSP-PANI. The MSP-PANI was applied to enhance uptake of lead ions (Pb2+) from wastewater samples. The functionalities, surface morphology, magnetic properties, and elemental composition of the newly synthesized nanocomposite were investigated using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), vibration sample magnetometer (VSM), and energy-dispersive X-ray spectroscopy (EDX), respectively. The experimental condition for the adsorption process was MSP/PANI ratio 1:1, pH ∼6, adsorbent dosage 40 mg, and contact time 90 min at room temperature. Under the proposed condition, lead ions removal were obtained as 83%, 88% and 95% for MSPE, PANI, and MSP/PANI, respectively. Based on the experimental and predicted data, the adsorption was corresponded to the psudo-second-order (R2 = 0.999) kinetics model, and the adsorption equilibrium corresponded to the Langmuir model (R2 = 0.996). Langmuir isotherm showed the maximum adsorption capacity of MSP-PANI for lead ions was 163 mg/g and followed the monolayer pattern. Hence, thermodynamic model under Van't Hoff equation suggested that the adsorption mechanism was physio-sorption with endothermic nature. Therefore, this research can help the researchers to use magnetic nanoparticles for lead removal in highly polluted areas.


Subject(s)
Wastewater , Water Pollutants, Chemical , Adsorption , Aniline Compounds , Biopolymers , Carotenoids , Hydrogen-Ion Concentration , Ions/chemistry , Kinetics , Lead , Magnetic Phenomena , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Pollutants, Chemical/analysis
16.
Toxics ; 9(11)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34822667

ABSTRACT

The public is already aware that nitrate pollution caused by nutrient runoff from farms is harmful to aquatic life and human health, and there is an urgent need for a product/technology to solve this problem. A biochar adsorbent was synthesized and used to remove nitrate ions from aqueous media based on spent mushroom compost (SMC), pre-treated with iron (III) chloride hexahydrate and pyrolyzed at 600 °C. The surface properties and morphology of SMCB/Fe were investigated using Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effect of main parameters such as the adsorbent dosages, pH of the solutions, contact times, and ion concentrations on the efficiency of nitrate removal was investigated. The validity of the experimental method was examined by the isothermal adsorption and kinetic adsorption models. The nitrate sorption kinetics were found to follow the pseudo-second-order model, with a higher determination coefficient (0.99) than the pseudo-first-order (0.86). The results showed that the maximum percentage of nitrate adsorption was achieved at equilibrium pH 5-7, after 120 min of contact time, and with an adsorbent dose of 2 g L-1. The highest nitrate adsorption capacity of the modified adsorbent was 19.88 mg g-1.

17.
Article in English | MEDLINE | ID: mdl-34651564

ABSTRACT

This paper describes the synthesis and characterization of Zn2+ decorated (adipic and terephthalic acid as linkers) piperazine-based metal-organic framework (P-MOFs) and their extraction behavior toward the Chicago sky blue (CSB) dye. The formation of Zn2+-decorated P-MOFs was confirmed by FT-IR spectroscopy, energy-dispersive spectroscopy, X-ray diffraction, BET surface area analysis and TGA. Adsorption behavior of the synthesized P-MOFs was explored through solid-phase adsorption (batch method) prior to UV-Vis spectrophotometric determination. Adsorption parameters, including adsorbent dosage, pH of solution, dye concentration, and time, were optimized. Excellent percentage removal of 94% and 95% for AP-Zn-MOF and TP-Zn-MOF, respectively, was achieved at pH 7.5. Kinetics studies indicated that the synthesized adsorbents AP-Zn-MOF and TP-Zn-MOF followed the pseudo-second-order rate model with R2 value 0.9989. The Freundlich isotherm with high R2 value as compared to Langmuir isotherm indicated that CSB adsorption for the synthesized MOFs follows multilayer adsorption.


Subject(s)
Metal-Organic Frameworks , Water Pollutants, Chemical , Adsorption , Carcinogens , Kinetics , Spectroscopy, Fourier Transform Infrared , Textiles , Water Pollutants, Chemical/analysis , Zinc
18.
Food Chem ; 341(Pt 2): 128460, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33162256

ABSTRACT

The novel green magnetic phosphonated-functionalized sporopollenin nanocomposite (MPSP-nanocomposite) was synthetized and used for stir bar sorptive dispersive microextraction (SBSDME) of melamine in milk and milk-based food products. TEM, SEM-EDX, FT-IR, VSM techniques were applied for characterization of MPSP-nanocomposite. The influential parameters including pH, extraction time, stirring rate, elution solvent type and volume, sample volume, desorption time, and ionic strength were studied and at optimum conditions, the linear range of 1-500 (µg L-1), the LOD (S/N = 3) of 0.30 (µg L-1), and the LOQ (S/N = 10) of 0.95 (µg L-1) were achieved. The intra-day precision values (RSD (%), n = 7) of 3.5% for the melamine concentration of 25 (µg L-1). The relative recoveries of 95.8% to 99.6% were acquired for the real samples which confirmed that the proposed method could be successfully utilized in complex matrixes with high matrix effects.


Subject(s)
Biopolymers/chemistry , Carotenoids/chemistry , Magnetics , Milk/chemistry , Triazines/isolation & purification , Animals , Nanocomposites , Osmolar Concentration , Spectroscopy, Fourier Transform Infrared
19.
Mikrochim Acta ; 187(11): 634, 2020 10 31.
Article in English | MEDLINE | ID: mdl-33128630

ABSTRACT

A simplistic approach is presented for the synthesis of ultrasonically fabricated graphene oxide functionalized with polyaniline and N-[3-(Trimethoxysilyl)propyl]ethylenediamine. The synthesized nanocomposite was then employed for the facile, green, ultrasound-assisted, magnetic dispersive solid-phase extraction of amoxicillin, ampicillin, and penicillin G in milk samples and infant formula prior to high-performance liquid chromatography-ultraviolet determination. The designed nanocomposites were comprehensively characterized using field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. In order to achieve the best extraction efficiencies, the influential parameters including pH, amount of magnetic sorbent, type and volume of elution solvent, extraction time, sample volume, and desorption time were assessed. At the optimum conditions, linear ranges of 2.5-1000 (µg L-1) for ampicillin and penicillin G and a linear range of 2.5-750 (µg L-1) were obtained for amoxicillin at optimum conditions. Moreover, the limits of detection (S/N = 3) of 0.5, 0.8, and 0.9 (µg L-1) were obtained for amoxicillin, ampicillin, and penicillin G, respectively. The precision (relative standard deviations (%)) values of 3.1, 2.6, and 2.5 at the concentration of 50 µg L-1 for seven replicates were obtained for ampicillin, amoxicillin, and penicillin G, respectively. The efficiencies of ≤ 96% and relative standard deviations of less than 3.1% were also obtained thereby confirming the high potential of the synthesized nanocomposites for simultaneous preconcentration and separation of the ß-lactam antibiotics in complex matrixes. Graphical Abstract.


Subject(s)
Amoxicillin/chemistry , Ampicillin/chemistry , Graphite/chemical synthesis , Penicillin G/chemistry , Solid Phase Extraction/methods , Ultrasonics/methods , Animals , Anti-Bacterial Agents/chemistry , Biosensing Techniques , Cattle , Drug Residues/chemistry , Food Analysis , Food Contamination , Magnetics , Milk/chemistry , Molecular Structure , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry
20.
Article in English | MEDLINE | ID: mdl-32545744

ABSTRACT

Nano-sized activated carbon was prepared from pomegranate peel (PG-AC) via NaOH chemical activation and was fully characterized using BET, FT-IR, FE-SEM, EDX, and XRD. The newly synthesized PG-AC was used for cefixime removal from the aqueous phase. The effective parameters on the adsorption process, including solution pH (2-11), salt effect (0-10%), adsorbent dosage (5-50 mg), contact time (5-300 min), and temperature (25-55 °C) were examined. The experimental adsorption equilibrium was in close agreement with the type IV isotherm model set by the International Union of Pure and Applied Chemistry (IUPAC). The adsorption process was evaluated with isotherm, kinetic, and thermodynamic models and it is were well fitted to the Freundlich isotherm (R2 = 0.992) and pseudo-second-order model (R2 = 0.999). The Langmuir isotherm provided a maximum adsorption capacity of 181.81 mg g-1 for cefixime uptake onto PG-AC after 60 min at pH 4. Hence, the isotherm, kinetic and thermodynamic models were indicated for the multilayer sorption followed by the exothermic physical adsorption mechanism.


Subject(s)
Cefixime , Pomegranate , Water Pollutants, Chemical , Water Purification , Adsorption , Anti-Bacterial Agents , Biomass , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...