Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Influenza Other Respir Viruses ; 18(6): e13318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031815

ABSTRACT

BACKGROUND: Understanding how symptoms are associated with SARS-CoV-2 culture positivity is important for isolation and transmission control guidelines. METHODS: Individuals acutely infected with SARS-CoV-2 in Tennessee and their household contacts were recruited into a prospective study. All participants self-collected nasal swabs daily for 14 days and completed symptom diaries from the day of illness onset through day 14 postenrollment. Nasal specimens were tested for SARS-CoV-2 using RT-qPCR. Positive specimens with cycle threshold values < 40 were sent to the Centers for Disease Control and Prevention (CDC) for viral culture. First, we modeled the association between symptoms and the risk of culture positivity using an age-adjusted generalized additive model (GAM) accounting for repeated measurements within participants and a symptom-day spline. Next, we investigated how timing of symptom resolution was associated with the timing of culture resolution. RESULTS: In a GAM restricted to follow-up days after symptoms began, the odds of a specimen being culture positive was significantly increased on days when wheezing, loss of taste or smell, runny nose, nasal congestion, sore throat, fever, or any symptom were reported. For all symptoms except sore throat, it was more common for participants to have culture resolution before symptom resolution than for culture to resolve after or on the same day as symptom resolution. CONCLUSIONS: Overall, symptomatic individuals were more likely to be SARS-CoV-2 viral culture positive. For most symptoms, culture positivity was more likely to end before symptoms resolved. However, a proportion of individuals remained culture positive after symptom resolved, across all symptoms.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Male , Female , Adult , Prospective Studies , Middle Aged , Adolescent , Tennessee , Young Adult , Aged , Child , Child, Preschool , Virus Cultivation/methods , Infant
2.
medRxiv ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39072026

ABSTRACT

Asymptomatic influenza virus infection occurs but may vary by factors such as age, influenza vaccination status, or influenza season. We examined the frequency of influenza virus infection and associated symptoms using data from two case-ascertained household transmission studies (conducted from 2017-2023) with prospective, systematic collection of respiratory specimens and symptoms. From the 426 influenza virus infected household contacts that met our inclusion criteria, 8% were asymptomatic, 6% had non-respiratory symptoms, 23% had acute respiratory symptoms, and 62% had influenza-like illness symptoms. Understanding the prevalence of asymptomatic and mildly symptomatic influenza cases is important for implementing effective influenza prevention strategies and enhancing the effectiveness of symptom-based surveillance systems.

3.
Influenza Other Respir Viruses ; 18(5): e13315, 2024 May.
Article in English | MEDLINE | ID: mdl-38798083

ABSTRACT

BACKGROUND: Novel influenza viruses pose a potential pandemic risk, and rapid detection of infections in humans is critical to characterizing the virus and facilitating the implementation of public health response measures. METHODS: We use a probabilistic framework to estimate the likelihood that novel influenza virus cases would be detected through testing in different community and healthcare settings (urgent care, emergency department, hospital, and intensive care unit [ICU]) while at low frequencies in the United States. Parameters were informed by data on seasonal influenza virus activity and existing testing practices. RESULTS: In a baseline scenario reflecting the presence of 100 novel virus infections with similar severity to seasonal influenza viruses, the median probability of detecting at least one infection per month was highest in urgent care settings (72%) and when community testing was conducted at random among the general population (77%). However, urgent care testing was over 15 times more efficient (estimated as the number of cases detected per 100,000 tests) due to the larger number of tests required for community testing. In scenarios that assumed increased clinical severity of novel virus infection, median detection probabilities increased across all healthcare settings, particularly in hospitals and ICUs (up to 100%) where testing also became more efficient. CONCLUSIONS: Our results suggest that novel influenza virus circulation is likely to be detected through existing healthcare surveillance, with the most efficient testing setting impacted by the disease severity profile. These analyses can help inform future testing strategies to maximize the likelihood of novel influenza detection.


Subject(s)
Influenza, Human , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/virology , United States/epidemiology , Orthomyxoviridae/isolation & purification , Orthomyxoviridae/genetics , Orthomyxoviridae/classification , Epidemiological Monitoring
5.
JMIR Public Health Surveill ; 10: e54340, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587882

ABSTRACT

We reviewed the tools that have been developed to characterize and communicate seasonal influenza activity in the United States. Here we focus on systematic surveillance and applied analytics, including seasonal burden and disease severity estimation, short-term forecasting, and longer-term modeling efforts. For each set of activities, we describe the challenges and opportunities that have arisen because of the COVID-19 pandemic. In conclusion, we highlight how collaboration and communication have been and will continue to be key components of reliable and actionable influenza monitoring, forecasting, and modeling activities.


Subject(s)
COVID-19 , Influenza, Human , United States/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Seasons , COVID-19/epidemiology , Centers for Disease Control and Prevention, U.S.
6.
MMWR Morb Mortal Wkly Rep ; 73(8): 168-174, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421935

ABSTRACT

In the United States, annual influenza vaccination is recommended for all persons aged ≥6 months. Using data from four vaccine effectiveness (VE) networks during the 2023-24 influenza season, interim influenza VE was estimated among patients aged ≥6 months with acute respiratory illness-associated medical encounters using a test-negative case-control study design. Among children and adolescents aged 6 months-17 years, VE against influenza-associated outpatient visits ranged from 59% to 67% and against influenza-associated hospitalization ranged from 52% to 61%. Among adults aged ≥18 years, VE against influenza-associated outpatient visits ranged from 33% to 49% and against hospitalization from 41% to 44%. VE against influenza A ranged from 46% to 59% for children and adolescents and from 27% to 46% for adults across settings. VE against influenza B ranged from 64% to 89% for pediatric patients in outpatient settings and from 60% to 78% for all adults across settings. These findings demonstrate that the 2023-24 seasonal influenza vaccine is effective at reducing the risk for medically attended influenza virus infection. CDC recommends that all persons aged ≥6 months who have not yet been vaccinated this season get vaccinated while influenza circulates locally.


Subject(s)
Influenza Vaccines , Influenza, Human , Adolescent , Adult , Humans , Child , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Case-Control Studies , Vaccine Efficacy
7.
Lancet Infect Dis ; 24(6): e394-e404, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38128563

ABSTRACT

Before the COVID-19 pandemic, the role of asymptomatic influenza virus infections in influenza transmission was uncertain. However, the importance of asymptomatic infection with SARS-CoV-2 for onward transmission of COVID-19 has led experts to question whether the role of asymptomatic influenza virus infections in transmission had been underappreciated. We discuss the existing evidence on the frequency of asymptomatic influenza virus infections, the extent to which they contribute to infection transmission, and remaining knowledge gaps. We propose priority areas for further evaluation, study designs, and case definitions to address existing knowledge gaps.


Subject(s)
Asymptomatic Infections , Influenza, Human , Humans , Asymptomatic Infections/epidemiology , COVID-19/transmission , COVID-19/epidemiology , Influenza, Human/transmission , Influenza, Human/epidemiology , SARS-CoV-2
8.
Influenza Other Respir Viruses ; 17(12): e13228, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38111901

ABSTRACT

Background: Influenza is a substantial cause of annual morbidity and mortality; however, correctly identifying those patients at increased risk for severe disease is often challenging. Several severity indices have been developed; however, these scores have not been validated for use in patients with influenza. We evaluated the discrimination of three clinical disease severity scores in predicting severe influenza-associated outcomes. Methods: We used data from the Influenza Hospitalization Surveillance Network to assess outcomes of patients hospitalized with influenza in the United States during the 2017-2018 influenza season. We computed patient scores at admission for three widely used disease severity scores: CURB-65, Quick Sepsis-Related Organ Failure Assessment (qSOFA), and the Pneumonia Severity Index (PSI). We then grouped patients with severe outcomes into four severity tiers, ranging from ICU admission to death, and calculated receiver operating characteristic (ROC) curves for each severity index in predicting these tiers of severe outcomes. Results: Among 8252 patients included in this study, we found that all tested severity scores had higher discrimination for more severe outcomes, including death, and poorer discrimination for less severe outcomes, such as ICU admission. We observed the highest discrimination for PSI against in-hospital mortality, at 0.78. Conclusions: We observed low to moderate discrimination of all three scores in predicting severe outcomes among adults hospitalized with influenza. Given the substantial annual burden of influenza disease in the United States, identifying a prediction index for severe outcomes in adults requiring hospitalization with influenza would be beneficial for patient triage and clinical decision-making.


Subject(s)
Influenza, Human , Pneumonia , Adult , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Severity of Illness Index , Hospitalization , Patient Acuity , ROC Curve , Prognosis , Retrospective Studies , Intensive Care Units
9.
Influenza Other Respir Viruses ; 17(12): e13235, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125808

ABSTRACT

Background: The ongoing COVID-19 pandemic has led to hundreds of millions of infections worldwide. Although differences in COVID-19 hospitalization rates between males and females have been described, many infections in the general population have been mild, and the severity of symptoms during the course of COVID-19 in non-hospitalized males and females is not well understood. Methods: We conducted a case-ascertained study to examine household transmission of SARS-CoV-2 infections in Nashville, Tennessee, between April 2020 and April 2021. Among enrolled ambulatory adult participants with laboratory-confirmed SARS-CoV-2 infections, we assessed the presence and severity of symptoms (total, systemic, and respiratory) daily using a symptoms severity questionnaire, from illness onset and throughout the 2-week follow-up period. We compared the mean daily symptom severity scores (0-3: none, mild, moderate, and severe) and change in symptoms between males and females using a multivariable linear mixed effects regression model. Results: The analysis included 223 enrolled adults with SARS-CoV-2 infection (58% females, mostly white, non-Hispanic) from 146 households with 2917 total daily symptom reports. The overall mean severity of total symptoms reported over the illness period was 1.04 and 0.90 for females and males, respectively. Mean systemic and respiratory scores were higher for females than for males (p < 0.001). In multivariable analyses, females reported more severe total and systemic symptoms during the illness period compared with males. However, no significant differences in reported respiratory symptoms were observed. Conclusions: Our findings indicate that among ambulatory adults with SARS-CoV-2 infections, females reported slightly higher symptom severity during their illness compared with males.


Subject(s)
COVID-19 , Adult , Humans , Female , Male , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Sex Characteristics , Tennessee/epidemiology
11.
MMWR Morb Mortal Wkly Rep ; 72(41): 1108-1114, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37824430

ABSTRACT

During the 2022-23 influenza season, early increases in influenza activity, co-circulation of influenza with other respiratory viruses, and high influenza-associated hospitalization rates, particularly among children and adolescents, were observed. This report describes the 2022-23 influenza season among children and adolescents aged <18 years, including the seasonal severity assessment; estimates of U.S. influenza-associated medical visits, hospitalizations, and deaths; and characteristics of influenza-associated hospitalizations. The 2022-23 influenza season had high severity among children and adolescents compared with thresholds based on previous seasons' influenza-associated outpatient visits, hospitalization rates, and deaths. Nationally, the incidences of influenza-associated outpatient visits and hospitalization for the 2022-23 season were similar for children aged <5 years and higher for children and adolescents aged 5-17 years compared with previous seasons. Peak influenza-associated outpatient and hospitalization activity occurred in late November and early December. Among children and adolescents hospitalized with influenza during the 2022-23 season in hospitals participating in the Influenza Hospitalization Surveillance Network, a lower proportion were vaccinated (18.3%) compared with previous seasons (35.8%-41.8%). Early influenza circulation, before many children and adolescents had been vaccinated, might have contributed to the high hospitalization rates during the 2022-23 season. Among symptomatic hospitalized patients, receipt of influenza antiviral treatment (64.9%) was lower than during pre-COVID-19 pandemic seasons (80.8%-87.1%). CDC recommends that all persons aged ≥6 months without contraindications should receive the annual influenza vaccine, ideally by the end of October.


Subject(s)
Influenza Vaccines , Influenza, Human , Patient Acuity , Adolescent , Child , Humans , Infant , COVID-19/epidemiology , Hospitalization , Incidence , Influenza, Human/prevention & control , Pandemics , Seasons , United States/epidemiology
12.
Lancet Microbe ; 4(11): e903-e912, 2023 11.
Article in English | MEDLINE | ID: mdl-37769676

ABSTRACT

BACKGROUND: Influenza burden varies across seasons, partly due to differences in circulating influenza virus types or subtypes. Using data from the US population-based surveillance system, Influenza Hospitalization Surveillance Network (FluSurv-NET), we aimed to assess the severity of influenza-associated outcomes in individuals hospitalised with laboratory-confirmed influenza virus infections during the 2010-11 to 2018-19 influenza seasons. METHODS: To evaluate the association between influenza virus type or subtype causing the infection (influenza A H3N2, A H1N1pdm09, and B viruses) and in-hospital severity outcomes (intensive care unit [ICU] admission, use of mechanical ventilation or extracorporeal membrane oxygenation [ECMO], and death), we used FluSurv-NET to capture data for laboratory-confirmed influenza-associated hospitalisations from the 2010-11 to 2018-19 influenza seasons for individuals of all ages living in select counties in 13 US states. All individuals had to have an influenza virus test within 14 days before or during their hospital stay and an admission date between Oct 1 and April 30 of an influenza season. Exclusion criteria were individuals who did not have a complete chart review; cases from sites that contributed data for three or fewer seasons; hospital-onset cases; cases with unidentified influenza type; cases of multiple influenza virus type or subtype co-infection; or individuals younger than 6 months and ineligible for the influenza vaccine. Logistic regression models adjusted for influenza season, influenza vaccination status, age, and FluSurv-NET site compared odds of in-hospital severity by virus type or subtype. When missing, influenza A subtypes were imputed using chained equations of known subtypes by season. FINDINGS: Data for 122 941 individuals hospitalised with influenza were captured in FluSurv-NET from the 2010-11 to 2018-19 seasons; after exclusions were applied, 107 941 individuals remained and underwent influenza A virus imputation when missing A subtype (43·4%). After imputation, data for 104 969 remained and were included in the final analytic sample. Averaging across imputed datasets, 57·7% (weighted percentage) had influenza A H3N2, 24·6% had influenza A H1N1pdm09, and 17·7% had influenza B virus infections; 16·7% required ICU admission, 6·5% received mechanical ventilation or ECMO, and 3·0% died (95% CIs had a range of less than 0·1% and are not displayed). Individuals with A H1N1pdm09 had higher odds of in-hospital severe outcomes than those with A H3N2: adjusted odds ratios (ORs) for A H1N1pdm09 versus A H3N2 were 1·42 (95% CI 1·32-1·52) for ICU admission; 1·79 (1·60-2·00) for mechanical ventilation or ECMO use; and 1·25 (1·07-1·46) for death. The adjusted ORs for individuals infected with influenza B versus influenza A H3N2 were 1·06 (95% CI 1·01-1·12) for ICU admission, 1·14 (1·05-1·24) for mechanical ventilation or ECMO use, and 1·18 (1·07-1·31) for death. INTERPRETATION: Despite a higher burden of hospitalisations with influenza A H3N2, we found an increased likelihood of in-hospital severe outcomes in individuals hospitalised with influenza A H1N1pdm09 or influenza B virus. Thus, it is important for individuals to receive an annual influenza vaccine and for health-care providers to provide early antiviral treatment for patients with suspected influenza who are at increased risk of severe outcomes, not only when there is high influenza A H3N2 virus circulation but also when influenza A H1N1pdm09 and influenza B viruses are circulating. FUNDING: The US Centers for Disease Control and Prevention.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , United States/epidemiology , Influenza, Human/therapy , Influenza, Human/prevention & control , Cross-Sectional Studies , Influenza A Virus, H3N2 Subtype , Influenza B virus , Hospitalization
13.
Proc Natl Acad Sci U S A ; 120(28): e2300590120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399393

ABSTRACT

When an influenza pandemic emerges, temporary school closures and antiviral treatment may slow virus spread, reduce the overall disease burden, and provide time for vaccine development, distribution, and administration while keeping a larger portion of the general population infection free. The impact of such measures will depend on the transmissibility and severity of the virus and the timing and extent of their implementation. To provide robust assessments of layered pandemic intervention strategies, the Centers for Disease Control and Prevention (CDC) funded a network of academic groups to build a framework for the development and comparison of multiple pandemic influenza models. Research teams from Columbia University, Imperial College London/Princeton University, Northeastern University, the University of Texas at Austin/Yale University, and the University of Virginia independently modeled three prescribed sets of pandemic influenza scenarios developed collaboratively by the CDC and network members. Results provided by the groups were aggregated into a mean-based ensemble. The ensemble and most component models agreed on the ranking of the most and least effective intervention strategies by impact but not on the magnitude of those impacts. In the scenarios evaluated, vaccination alone, due to the time needed for development, approval, and deployment, would not be expected to substantially reduce the numbers of illnesses, hospitalizations, and deaths that would occur. Only strategies that included early implementation of school closure were found to substantially mitigate early spread and allow time for vaccines to be developed and administered, especially under a highly transmissible pandemic scenario.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pharmaceutical Preparations , Pandemics/prevention & control , Influenza Vaccines/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
14.
Open Forum Infect Dis ; 10(4): ofad162, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37089774

ABSTRACT

Background: Data are limited on influenza testing among adults with acute respiratory illness (ARI)-associated hospitalizations. We identified factors associated with influenza testing in adult ARI-associated hospitalizations across the 2016-2017 through 2019-2020 influenza seasons. Methods: Using data from 4 health systems in the United States, we identified hospitalizations that had an ARI discharge diagnosis or respiratory virus test. A hospitalization with influenza testing was based on testing performed within 14 days before through 72 hours after admission. We used random forest analysis to identify patient characteristics and influenza activity indicators that were most important in terms of their relationship to influenza testing. Results: Across 4 seasons, testing rates ranged from 14.8%-19.4% at 3 pooled sites and 60.1%-78.5% at a fourth site with different testing practices. Discharge diagnoses of pneumonia or infectious disease of noninfluenza etiology, presence of ARI signs/symptoms, hospital admission month, and influenza-like illness activity level were consistently among the variables with the greatest relative importance. Conclusions: Select ARI diagnoses and indicators of influenza activity were the most important factors associated with influenza testing among ARI-associated hospitalizations. Improved understanding of which patients are tested may enhance influenza burden estimates and allow for more timely clinical management of influenza-associated hospitalizations.

15.
Open Forum Infect Dis ; 10(3): ofad068, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36879622

ABSTRACT

Background: Community surveillance for acute respiratory illness (ARI) can include unsupervised participant-collected nasal swabs. Little is known about use of self-swabs in low-income populations or among households including extended family members and the validity of self-collected swabs. We assessed the acceptability, feasibility, and validity of unsupervised participant-collected nasal swabs in a low-income, community sample. Methods: This was a substudy of a larger prospective community-based ARI surveillance study in 405 households in New York City. Participating household members self-collected swabs on the day of a research home visit for an index case, and for 3-6 subsequent days. Demographics associated with agreement to participate and swab collection were assessed, and index case self-collected versus research staff-collected swab results were compared. Results: Most households (n = 292 [89.6%]) agreed to participate, including 1310 members. Being <18 years old, female, and the household reporter or member of the nuclear family (parents and children) were associated with both agreement to participate and self-swab collection. Being born in the United States or immigrating ≥10 years ago was associated with participation, and being Spanish-speaking and having less than a high school education were associated with swab collection. In all, 84.4% collected at least 1 self-swabbed specimen; self-swabbing rates were highest during the first 4 collection days. Concordance between research staff-collected swabs and self-swabs was 88.4% for negative swabs, 75.0% for influenza, and 69.4% for noninfluenza pathogens. Conclusions: Self-swabbing was acceptable, feasible, and valid in this low-income, minoritized population. Some differences in participation and swab collection were identified that could be noted by future researchers and modelers.

16.
Epidemiology ; 34(3): 345-352, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36807266

ABSTRACT

BACKGROUND: High-dose, adjuvanted, and recombinant influenza vaccines may offer improved effectiveness among older adults compared with standard-dose, unadjuvanted, inactivated vaccines. However, the Advisory Committee on Immunization Practices (ACIP) only recently recommended preferential use of these "higher-dose or adjuvanted" vaccines. One concern was that individuals might delay or decline vaccination if a preferred vaccine is not readily available. METHODS: We mathematically model how a recommendation for preferential use of higher-dose or adjuvanted vaccines in adults ≥65 years might impact influenza burden in the United States during exemplar "high-" and "low-"severity seasons. We assume higher-dose or adjuvanted vaccines are more effective than standard vaccines and that such a recommendation would increase uptake of the former but could cause (i) delays in administration of additional higher-dose or adjuvanted vaccines relative to standard vaccines and/or (ii) reductions in overall coverage if individuals only offered standard vaccines forego vaccination. RESULTS: In a best-case scenario, assuming no delay or coverage reduction, a new recommendation could decrease hospitalizations and deaths in adults ≥65 years by 0%-4% compared with current uptake. However, intermediate and worst-case scenarios, with assumed delays of 3 or 6 weeks and/or 10% or 20% reductions in coverage, included projections in which hospitalizations and deaths increased by over 7%. CONCLUSIONS: We estimate that increased use of higher-dose or adjuvanted vaccines could decrease influenza burden in adults ≥65 in the United States provided there is timely and adequate access to these vaccines, and that standard vaccines are administered when they are unavailable.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , United States/epidemiology , Aged , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Vaccination , Seasons , Advisory Committees
17.
J Infect Dis ; 227(12): 1343-1347, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36705269

ABSTRACT

From 2 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) household transmission studies (enrolling April 2020 to January 2022) with rapid enrollment and specimen collection for 14 days, 61% (43/70) of primary cases had culturable virus detected ≥6 days post-onset. Risk of secondary infection among household contacts tended to be greater when primary cases had culturable virus detected after onset. Regardless of duration of culturable virus, most secondary infections (70%, 28/40) had serial intervals <6 days, suggesting early transmission. These data examine viral culture as a proxy for infectiousness, reaffirm the need for rapid control measures after infection, and highlight the potential for prolonged infectiousness (≥6 days) in many individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Tennessee/epidemiology , Family Characteristics , California/epidemiology
18.
Open Forum Infect Dis ; 10(1): ofac681, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36686630

ABSTRACT

From surveillance data of patients hospitalized with laboratory-confirmed influenza in the United States during the 2015-2016 through 2018-2019 seasons, initiation of antiviral treatment increased from 86% to 94%, with increases seen across all age groups. However, 62% started therapy ≥3 days after illness onset, driven by late presentation to care.

19.
Influenza Other Respir Viruses ; 17(1): e13089, 2023 01.
Article in English | MEDLINE | ID: mdl-36625234

ABSTRACT

BACKGROUND: The COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) required a sampling methodology that allowed for production of timely population-based clinical estimates to inform the ongoing US COVID-19 pandemic response. METHODS: We developed a flexible sampling approach that considered reporting delays, differential hospitalized case burden across surveillance sites, and changing geographic and demographic trends over time. We incorporated weighting methods to adjust for the probability of selection and non-response, and to calibrate the sampled case distribution to the population distribution on demographics. We additionally developed procedures for variance estimation. RESULTS: Between March 2020 and June 2021, 19,293 (10.4%) of all adult hospitalized cases were sampled for chart abstraction. Variance estimates for select variables of interest were within desired ranges. CONCLUSIONS: COVID-NET's sampling methodology allowed for reporting of robust and timely, population-based data on the clinical epidemiology of COVID-19-associated hospitalizations and evolving trends over time, while attempting to reduce data collection burden on surveillance sites. Such methods may provide a general framework for other surveillance systems needing to quickly and efficiently collect and disseminate data for public health action.


Subject(s)
COVID-19 , Adult , Humans , United States/epidemiology , COVID-19/epidemiology , Pandemics , Population Surveillance/methods , Public Health , Hospitalization
20.
JAMA ; 329(6): 482-489, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36701144

ABSTRACT

Importance: Influenza virus infections declined globally during the COVID-19 pandemic. Loss of natural immunity from lower rates of influenza infection and documented antigenic changes in circulating viruses may have resulted in increased susceptibility to influenza virus infection during the 2021-2022 influenza season. Objective: To compare the risk of influenza virus infection among household contacts of patients with influenza during the 2021-2022 influenza season with risk of influenza virus infection among household contacts during influenza seasons before the COVID-19 pandemic in the US. Design, Setting, and Participants: This prospective study of influenza transmission enrolled households in 2 states before the COVID-19 pandemic (2017-2020) and in 4 US states during the 2021-2022 influenza season. Primary cases were individuals with the earliest laboratory-confirmed influenza A(H3N2) virus infection in a household. Household contacts were people living with the primary cases who self-collected nasal swabs daily for influenza molecular testing and completed symptom diaries daily for 5 to 10 days after enrollment. Exposures: Household contacts living with a primary case. Main Outcomes and Measures: Relative risk of laboratory-confirmed influenza A(H3N2) virus infection in household contacts during the 2021-2022 season compared with prepandemic seasons. Risk estimates were adjusted for age, vaccination status, frequency of interaction with the primary case, and household density. Subgroup analyses by age, vaccination status, and frequency of interaction with the primary case were also conducted. Results: During the prepandemic seasons, 152 primary cases (median age, 13 years; 3.9% Black; 52.0% female) and 353 household contacts (median age, 33 years; 2.8% Black; 54.1% female) were included and during the 2021-2022 influenza season, 84 primary cases (median age, 10 years; 13.1% Black; 52.4% female) and 186 household contacts (median age, 28.5 years; 14.0% Black; 63.4% female) were included in the analysis. During the prepandemic influenza seasons, 20.1% (71/353) of household contacts were infected with influenza A(H3N2) viruses compared with 50.0% (93/186) of household contacts in 2021-2022. The adjusted relative risk of A(H3N2) virus infection in 2021-2022 was 2.31 (95% CI, 1.86-2.86) compared with prepandemic seasons. Conclusions and Relevance: Among cohorts in 5 US states, there was a significantly increased risk of household transmission of influenza A(H3N2) in 2021-2022 compared with prepandemic seasons. Additional research is needed to understand reasons for this association.


Subject(s)
COVID-19 , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Influenza, Human , Adolescent , Adult , Child , Female , Humans , Male , COVID-19/epidemiology , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza Vaccines/therapeutic use , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/transmission , Pandemics/prevention & control , Pandemics/statistics & numerical data , Prospective Studies , Seasons , Family Characteristics , United States/epidemiology , Contact Tracing/statistics & numerical data , Self-Testing
SELECTION OF CITATIONS
SEARCH DETAIL