Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 18049, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103401

ABSTRACT

This study presents a computational analysis of fluid flow characteristics around two staggered arranged square cylinders using the Lattice Boltzmann Method (LBM). With Reynolds number (Re) fixed at 200, numerical simulations explore the influence of varying gap ratios (G) ranging from 0 to 10 times the cylinder size. Emphasis is placed on understanding the impact of cylinders spacing on flow structure mechanisms and induced forces. Investigation of fluid flow parameters includes vorticity behavior, pressure streamlines, and variations in drag and lift coefficients alongside the Strouhal number under different values of G. From the results, four distinct flow patterns emerge: single bluff body flow, flip flopping flow, modulated synchronized flow, and synchronized flow, each exhibiting unique characteristics. This study reveals the strong dependence of fluid forces on G, with low spacing values leading to complex vortex structures and fluctuating forces influenced by jet flow effects. At higher spacing values, proximity effects between cylinders diminish, resulting in a smoother periodic flow. The Strouhal number, average drag force and the rms values of drag and lift force coefficients vary abruptly at narrow gaps and become smooth at higher gap ratios. Unlike the tandem and side-by-side arrangements the staggered cylinders arrangement is found to have significant impact on the pressure variations around both cylinders. Overall, this research could contribute to a comprehensive understanding of staggered cylinder arrangements and their implications for engineering applications.

2.
Sci Rep ; 14(1): 15282, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961091

ABSTRACT

This study presents a comprehensive analysis of a nonlinear telecommunications model, exploring bifurcation, stability, and wave solutions using Hamiltonian and Jacobian techniques. The investigation begins with a thorough examination of bifurcation behavior, identifying critical points and their stability characteristics, leading to the discovery of diverse bifurcation scenarios. The stability of critical points is further assessed through graphical and numerical methods, highlighting the sensitivity to parameter variations. The study delves into the derivation of both numerical and analytical wave solutions, aligning them with energy orbits depicted in phase portraits, revealing a spectrum of wave behaviors. Additionally, the analysis extends to traveling wave solutions, providing insights into wave propagation dynamics. Notably, the study underscores the efficacy of the planar dynamical approach in capturing system behavior in harmony with phase portrait orbits. The findings have significant implications for telecommunications engineers and researchers, offering insights into system behavior, stability, and signal propagation, ultimately advancing our understanding of complex nonlinear dynamics in telecommunications networks.

3.
Sci Rep ; 14(1): 15524, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969733

ABSTRACT

This study investigates the influence of small control cylinders on the fluid dynamics around a square cylinder using the Lattice Boltzmann Method (LBM). Varying the gaps (L) between the main and control cylinders from 0 to 6, four distinct flow regimes are identified: the solo body regime (SBR), shear layer reattachment (SLR), suppressed fully developed flow (SFDF), and intermittent shedding (IS). The presence of control cylinders results in significant reductions in flow-induced forces, with drag coefficient (CD) and root mean square values of drag and lift coefficients (CDrms and CLrms) decreasing by approximately 31%, 90%, and 81%, respectively. The SFDF flow regime exhibits the lowest fluid forces compared to other regimes. The effects of tiny control cylinders on the fluid flow characteristics of a square cylinder are examined using the Lattice Boltzmann Method (LBM) in this research work. The gaps (L) between the main and control cylinders are varied in the range from 0 to 6. The size of each control cylinder is equal to one-fifth of the primary cylinder. According to the findings, there are four distinct flow regimes as the gap spacing varies: solo body regime (SBR), shear layer reattachment (SLR), suppressed fully developed flow (SFDF), and intermittent shedding (IS) for gap spacing ranges 0 ≤ L ≤ 0.2, 0.3 ≤ L ≤ 0.9, 1 ≤ L ≤ 3, and 3.2 ≤ L ≤ 6, respectively. Additionally, it has been noted that the amplitude of variable lift force is reduced when the gap separation between the main and control cylinders is increased. When compared to solo cylinder values, it is found that the presence of small control cylinders in the flow field results in a considerable reduction of flow-induced forces. The SFDF flow regime was determined to have the lowest fluid forces compared to the other flow regimes studied. Our findings highlight the efficacy of small control cylinders in mitigating flow-induced forces and controlling flow characteristics. The LBM proves to be a valuable computational technique for such fluid flow problems.

4.
Sci Rep ; 14(1): 17749, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085274

ABSTRACT

Incorporating selenium into high-surface-area carbon with hierarchical pores, derived from red kidney bean peels via simple carbonization/activation, yields a superior Li-Se battery cathode material. This method produces a carbon framework with 568 m2 g-1 surface area, significant pore volume, and improves the composite's electronic conductivity and stability by mitigating volume changes and reducing lithium polyselenide dissolution. The Se@ACRKB composite, containing 45 wt% selenium, shows high discharge capacities (609.13 mAh g-1 on the 2nd cycle, maintaining 470.76 mAh g-1 after 400 cycles at 0.2 C, and 387.58 mAh g-1 over 1000 cycles at 1 C). This demonstrates exceptional long-term stability and performance, also applicable to Na-Se batteries, with 421.36 mAh g-1 capacity after 200 cycles at 0.1 C. Our study showcases the potential of using sustainable materials for advanced battery technologies, emphasizing cost-effective and scalable solutions for energy storage.

5.
Sci Rep ; 14(1): 11024, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744984

ABSTRACT

The integration of Artificial Intelligence (AI) and Machine Learning (ML) techniques into computational science has ushered in a new era of innovation and efficiency in various fields, with particular significance in computational fluid dynamics (CFD). Several methods based on AI and Machine Learning (ML) have been standardized in many fields of computational science, including computational fluid dynamics (CFD). This study aims to couple CFD with artificial neural networks (ANNs) to predict the fluid forces that arise when a flowing fluid interacts with obstacles installed in the flow domain. The momentum equation elucidating the flow has been simulated by adopting the finite element method (FEM) for a range of rheological and kinematic conditions. Hydrodynamic forces, including pressure drop between the back and front of the obstacle, surface drag, and lift variations, are measured on the outer surface of the cylinder via CFD simulations. This data has subsequently been fed into a Feed-Forward Back (FFB) propagation neural network for the prediction of such forces with completely unknown data. For all cases, higher predictivity is achieved for the drag coefficient (CD) and lift coefficient (CL) since the mean square error (MSE) is within ± 2% and the coefficient of determination (R) is approximately 99% for all the cases. The influence of pertinent parameters like the power law index (n) and Reynolds number (Re) on velocity, pressure, and drag and lift coefficients is also presented for limited cases. Moreover, a significant reduction in computing time has been noticed while applying hybrid CFD-ANN approach as compared with CFD simulations only.

6.
Sci Rep ; 14(1): 2000, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263356

ABSTRACT

The space-time fractional Fokas-Lenells (STFFL) equation serves as a fundamental mathematical model employed in telecommunications and transmission technology, elucidating the intricate dynamics of nonlinear pulse propagation in optical fibers. This study employs the Sardar sub-equation (SSE) approach within the STFFL equation framework to explore uncharted territories, uncovering a myriad of optical soliton solutions (OSSs) and conducting a thorough analysis of their bifurcations. The discovered OSSs encompass a diverse array, including bright-dark, periodic, multiple bright-dark solitons, and various other types, forming a captivating spectrum. These solutions reveal an intricate interplay among bright-dark solitons, complex periodic sequences, rhythmic breathers, coexistence of multiple bright-dark solitons, alongside intriguing phenomena like kinks, anti-kinks, and dark-bell solitons. This exploration, built upon meticulous literature review, unveils previously undiscovered wave patterns within the dynamic framework of the STFFL equation, significantly expanding the theoretical understanding and paving the way for innovative applications. Utilizing 2D, contour, and 3D diagrams, we illustrate the influence of fractional and temporal parameters on these solutions. Furthermore, comprehensive 2D, 3D, contour, and bifurcation analysis diagrams scrutinize the nonlinear effects inherent in the STFFL equation. Employing a Hamiltonian function (HF) enables detailed phase-plane dynamics analysis, complemented by simulations conducted using Python and MAPLE software. The practical implications of the discovered OSS solutions extend to real-world physical events, underlining the efficacy and applicability of the SSE scheme in solving time-space nonlinear fractional differential equations (TSNLFDEs). Hence, it is crucial to acknowledge the SSE technique as a direct, efficient, and reliable numerical tool, illuminating precise outcomes in nonlinear comparisons.

7.
Sci Rep ; 13(1): 18959, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919309

ABSTRACT

This study investigates the influence of a rectangular heat source on magnetohydrodynamic hybrid convection flow in a lid-driven cavity. The effects of various parameters, such as the heat source size, magnetic field strength, and heat absorption/generation, are analyzed. The results show that increasing the heat source size decreases the average Nusselt number along the heated wall. The average Nusselt number also decreases with higher magnetic field strength and heat generation, while it increases with heat absorption. The major finding is to apply an important technique the Galerkin weighted residual technique of the finite element (FE) method to solve the non-dimensional equations and the associated boundary conditions. The isotherms are used to show the temperature distribution in a domain. Streamline present the flow field in the enclosure. However, it is easy to realize the direction and intensity of the heat transfer particularly in convection problems which the path of heat flux is perpendicular and the isotherm due to convection effect. Thus, the purpose of this research is to study the results of mixed convection. The effects of location and height of the partitions are considered for the various Richardson numbers. Fluid flow field, thermal field and heat transfer are presented through the streamlines and isotherms, respectively. Results are substantiated relating to the published work.

8.
Sci Rep ; 13(1): 9906, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37336946

ABSTRACT

In this study, the uses of unified method for finding solutions of a nonlinear Schrödinger equation that describes the nonlinear spin dynamics of (2+1) dimensional Heisenberg ferromagnetic spin chains equation. We successfully construct solutions to these equations. For each of the derived solutions, we provide the parametric requirements for the existence of a valid soliton. In order to visualize some of the discovered solutions, we plot the 2D and 3D graphics. The results of this investigation, which have been presented, might be useful in elucidating the model's physical significance. These are a highly useful tool for studying how electrical solitons, which travel as voltage waves in nonlinear dispersive media, spread out, as well as for doing various physical calculations. The study's findings, which have been disclosed, might be useful in illuminating the models under consideration's physical significance and electrical field.

SELECTION OF CITATIONS
SEARCH DETAIL