Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nat Commun ; 15(1): 3813, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714682

Innate antiviral factors are essential for effective defense against viral pathogens. However, the identity of major restriction mechanisms remains elusive. Current approaches to discover antiviral factors usually focus on the initial steps of viral replication and are limited to a single round of infection. Here, we engineered libraries of >1500 replication-competent HIV-1 constructs each expressing a single gRNAs to target >500 cellular genes for virus-driven discovery of antiviral factors. Passaging in CD4+ T cells robustly enriched HIV-1 encoding sgRNAs against GRN, CIITA, EHMT2, CEACAM3, CC2D1B and RHOA by >50-fold. Using an HIV-1 library lacking the accessory nef gene, we identified IFI16 as a Nef target. Functional analyses in cell lines and primary CD4+ T cells support that the HIV-driven CRISPR screen identified restriction factors targeting virus entry, transcription, release and infectivity. Our HIV-guided CRISPR technique enables sensitive discovery of physiologically relevant cellular defense factors throughout the entire viral replication cycle.


CD4-Positive T-Lymphocytes , HIV-1 , Virus Replication , nef Gene Products, Human Immunodeficiency Virus , Humans , HIV-1/genetics , HIV-1/physiology , Virus Replication/genetics , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , HEK293 Cells , CRISPR-Cas Systems , HIV Infections/virology , HIV Infections/genetics , HIV Infections/immunology , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Virus Internalization
2.
Viruses ; 16(4)2024 03 23.
Article En | MEDLINE | ID: mdl-38675836

PYHIN proteins are only found in mammals and play key roles in the defense against bacterial and viral pathogens. The corresponding gene locus shows variable deletion and expansion ranging from 0 genes in bats, over 1 in cows, and 4 in humans to a maximum of 13 in mice. While initially thought to act as cytosolic immune sensors that recognize foreign DNA, increasing evidence suggests that PYHIN proteins also inhibit viral pathogens by more direct mechanisms. Here, we examined the ability of all 13 murine PYHIN proteins to inhibit HIV-1 and murine leukemia virus (MLV). We show that overexpression of p203, p204, p205, p208, p209, p210, p211, and p212 strongly inhibits production of infectious HIV-1; p202, p207, and p213 had no significant effects, while p206 and p214 showed intermediate phenotypes. The inhibitory effects on infectious HIV-1 production correlated significantly with the suppression of reporter gene expression by a proviral Moloney MLV-eGFP construct and HIV-1 and Friend MLV LTR luciferase reporter constructs. Altogether, our data show that the antiretroviral activity of PYHIN proteins is conserved between men and mice and further support the key role of nuclear PYHIN proteins in innate antiviral immunity.


HIV-1 , Leukemia Virus, Murine , Phosphoproteins , Animals , Mice , Humans , HIV-1/immunology , HIV-1/genetics , Leukemia Virus, Murine/genetics , Leukemia Virus, Murine/immunology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/immunology , Virus Replication , Cell Line , Retroviridae Infections/immunology , Retroviridae Infections/virology
3.
Sci Rep ; 10(1): 12241, 2020 07 22.
Article En | MEDLINE | ID: mdl-32699244

Autophagy is a cellular homeostatic pathway with functions ranging from cytoplasmic protein turnover to immune defense. Therapeutic modulation of autophagy has been demonstrated to positively impact the outcome of autophagy-dysregulated diseases such as cancer or microbial infections. However, currently available agents lack specificity, and new candidates for drug development or potential cellular targets need to be identified. Here, we present an improved method to robustly detect changes in autophagy in a high-throughput manner on a single cell level, allowing effective screening. This method quantifies eGFP-LC3B positive vesicles to accurately monitor autophagy. We have significantly streamlined the protocol and optimized it for rapid quantification of large numbers of cells in little time, while retaining accuracy and sensitivity. Z scores up to 0.91 without a loss of sensitivity demonstrate the robustness and aptness of this approach. Three exemplary applications outline the value of our protocols and cell lines: (I) Examining autophagy modulating compounds on four different cell types. (II) Monitoring of autophagy upon infection with e.g. measles or influenza A virus. (III) CRISPR/Cas9 screening for autophagy modulating factors in T cells. In summary, we offer ready-to-use protocols to generate sensitive autophagy reporter cells and quantify autophagy in high-throughput assays.


Autophagy/immunology , High-Throughput Screening Assays/methods , Mammals/immunology , Animals , CRISPR-Cas Systems/immunology , Cell Line , Cell Line, Tumor , HEK293 Cells , HeLa Cells , Humans , Infections/immunology , Jurkat Cells , T-Lymphocytes/immunology , THP-1 Cells
4.
Cell Host Microbe ; 20(3): 381-391, 2016 Sep 14.
Article En | MEDLINE | ID: mdl-27631701

The cellular factor serine incorporator 5 (SERINC5) impairs HIV-1 infectivity but is antagonized by the viral Nef protein. We analyzed the anti-SERINC5 activity of Nef proteins across primate lentiviruses and examined whether SERINC5 represents a barrier to cross-species transmissions and/or within-species viral spread. HIV-1, HIV-2, and SIV Nefs counteract human, ape, monkey, and murine SERINC5 orthologs with similar potency. However, HIV-1 Nefs are more active against SERINC5 than HIV-2 Nefs, and chimpanzee SIV (SIVcpz) Nefs are more potent than those of their monkey precursors. Additionally, Nefs of HIV and most SIVs rely on the dileucine motif in the C-terminal loop for anti-SERINC5 activity, while the Nef from colobus SIV (SIVcol) evolved different inhibitory mechanisms. We also found a significant correlation between anti-SERINC5 potency and the SIV prevalence in the respective ape and monkey species. Thus, Nef-mediated SERINC5 antagonism may determine the ability of primate lentiviruses to spread within natural hosts.


HIV-1/pathogenicity , HIV-2/pathogenicity , Simian Acquired Immunodeficiency Syndrome/epidemiology , Simian Immunodeficiency Virus/pathogenicity , Viral Regulatory and Accessory Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Cells, Cultured , HIV-1/immunology , HIV-2/immunology , Host-Pathogen Interactions , Humans , Mice , Primates , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Virulence Factors/metabolism
5.
Retrovirology ; 12: 86, 2015 Oct 09.
Article En | MEDLINE | ID: mdl-26452480

BACKGROUND: Elderly HIV-1 infected individuals progress to AIDS more frequently and rapidly than people becoming infected at a young age. To identify possible reasons for these differences in clinical progression, we performed comprehensive phenotypic analyses of CD4+ T cells from uninfected young and elderly individuals, and examined their susceptibility to HIV-1 infection and programmed death. RESULTS: Peripheral blood mononuclear cells (PBMCs) from older people contain an increased percentage of central memory and Th17 CD4+ T cells that are main target cells of HIV-1 and strongly reduced proportions of naïve T cells that are poorly susceptible to HIV-1. Unstimulated T cells from elderly individuals expressed higher levels of activation markers, death receptors, and the viral CXCR4 co-receptor than those from young individuals but responded poorly to stimulation. CD4+ T cells from older individuals were highly susceptible to CXCR4- and CCR5-tropic HIV-1 infection but produced significantly lower quantities of infectious virus than cells from young individuals because they were highly prone to apoptosis and thus presumably had a very short life span. The increased susceptibility of T cells from the elderly to HIV-1 infection correlated directly with CXCR4 and inversely with CD4 expression. The levels of apoptosis correlated with the cell surface expression of FAS but not with the expression of programmed death receptor 1 (PD1) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). CONCLUSIONS: Increased levels of activated and highly susceptible HIV-1 target cells, reduced CD4 and enhanced CXCR4 cell surface expression, together with the high susceptibility to FAS-induced programmed cell death may contribute to the rapid CD4+ T cell depletion and accelerated clinical course of infection in elderly HIV-1-infected individuals.


Aging , CD4 Antigens/genetics , CD4-Positive T-Lymphocytes/physiology , CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , Receptors, CXCR4/genetics , fas Receptor/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Apoptosis , Female , HIV Infections/immunology , HIV-1/physiology , Humans , Immunologic Memory , Leukocytes, Mononuclear/immunology , Male , Membrane Glycoproteins , Middle Aged , Programmed Cell Death 1 Receptor/genetics , Signal Transduction , Young Adult
...