Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Food Chem ; 438: 137989, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37992607

ABSTRACT

The pecan (Carya illinoinensis) is an important tree nut worldwide. Browning of the testa during storage considerably reduces its quality. However, the pigments that cause browning and their accumulation patterns are poorly understood. We analyzed the color changes in the testa during the five developmental stages of the kernel after storage at room temperature to compare differences in their color and identify the pigments. Samples exhibiting different colors along with their corresponding -80 °C storage samples were selected for metabolomic analysis. A total of 591 phenolic compounds were detected, 52 phenolics showed regulatory effects on testa discoloration, and 59 metabolites were identified as possible precursors of the pigments. This study revealed the most thorough phenolic composition of pecan to date. Further, the findings provide new insights into the mechanisms of testa browning, deepens our understanding of the bioactive value of pecans, and contributes to the breeding of less browning-susceptible varieties.


Subject(s)
Carya , Carya/metabolism , Plant Breeding , Phenols/metabolism , Nuts
2.
J Agric Food Chem ; 71(14): 5812-5822, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36995220

ABSTRACT

Pecan, Carya illinoinensis (Wangenh.) K. Koch, is an important dried fruit and woody oil tree species grown worldwide. With continuous expansion of pecan cultivation, the frequency and scope of diseases, especially black spot disease, are increasing, damaging trees and reducing yields. In this study, the key factors in resistance to black spot disease (Colletotrichum fioriniae) were investigated between the high-resistance pecan variety "Kanza" and the low-resistance variety "Mahan". Leaf anatomy and antioxidase activities confirmed much stronger resistance to black spot disease in "Kanza" than in "Mahan". Transcriptome analysis indicated that the increased expression of genes associated with defense response, oxidation-reduction, and catalytic activity was involved in disease resistance. A connection network identified a highly expressed hub gene CiFSD2 (CIL1242S0042), which might participate in redox reactions to affect disease resistance. Overexpression of CiFSD2 in tobacco inhibited enlargement of necrotic spots and increased disease resistance. Overall, the expression of differentially expressed genes differed in pecan varieties with different levels of resistance to C. fioriniae infection. In addition, the hub genes associated with black spot resistance were identified and the functions clarified. The in-depth understanding of resistance to black spot disease provides new insights for early screening of resistant varieties and molecular-assisted breeding in pecan.


Subject(s)
Carya , Carya/genetics , Disease Resistance , Fruit , Gene Expression Profiling
3.
J Agric Food Chem ; 70(50): 16010-16020, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36472227

ABSTRACT

Pecans are a globally important tree nut crop. Pecan nuts are rich in fatty acids (FAs), proteins, and flavonoids in addition to thiamine and numerous micronutrients. Although several of these nutriments have been studied in this plant, the comprehensive metabolite variations and molecular mechanisms associated with them have not been fully elucidated. In this study, untargeted metabolomics and transcriptomics were integrated to reveal the metabolite accumulation patterns and their associated molecular mechanisms during pecan kernel development. In total, 4260 (under positive mode) and 2726 (under negative mode) high quality features were retained. Overall, 163 differentially accumulated metabolites were identified. Most components were classified into the categories "organic acids and derivatives" and "lipids and lipid-like molecules." The accumulation patterns of amino acids, FAs, carbohydrates, organic acids, vitamins, flavonoids, and phenylpropanoids alongside embryo development were determined. Furthermore, transcriptomes from four pecan kernel developmental stages were used to assess transcript expression levels. Coexpression analyses were performed between FAs and their related genes. This study provides a comprehensive overview of the metabolic changes and regulations during pecan kernel development. We believe that the identification of nutriment accumulation trends and hub genes associated with the biosynthesis of the components will be valuable for genetically improving this plant.


Subject(s)
Carya , Carya/chemistry , Fatty Acids/metabolism , Transcriptome , Nuts/chemistry , Metabolomics , Flavonoids/chemistry
4.
Front Plant Sci ; 13: 1003728, 2022.
Article in English | MEDLINE | ID: mdl-36388522

ABSTRACT

It is of great significance to study the nutritional characteristics of plants. Further understanding of plant mineral nutrient dynamics can provide theoretical basis for scientific fertilization to improve fruit quality and yield. In this study, eight mineral elements (N, P, K, Ca, Mg, Mn, Zn, B) were measured at regular intervals in leaves and kernels of the pecan "Mahan" planted in southern China. The study discussed the characteristics of mineral nutrient dynamics of pecan through the indicators of concentration, accumulation and cumulative relative rate, a new first proposed indicator, and focused on critical time, intensity, amount of mineral nutrients required in pecan during the fruit developing period, as well as the transfer information of the elements in leaves and kernels. The results show that the mineral nutrient requirements of the leaves and kernels are not identical, with an upward trend in nutrient accumulation within the kernel. The most abundant mineral nutrients in the leaves and kernels were N, K and Ca with Ca being greater than N in leaves. In particular, the concentration of Mn in pecan 'Mahan' is higher than that of other plants, and its Mg content is also higher than that of P in kernels. The dynamic changes of mineral nutrients in walnut showed obvious stages, with a trend of "slow (before mid-July) - fast (mid-July to late August) - slow (late August to late September) - fast (late September to harvest)". The "critical period" of kernels was before mid-July, during which the cumulative relative rates increased rapidly, indicating that the kernels had a great potential to absorb mineral nutrients. Significant accumulation of mineral nutrients occurred from mid-July to late August and late September to the end.

5.
Front Plant Sci ; 13: 804968, 2022.
Article in English | MEDLINE | ID: mdl-35283902

ABSTRACT

Flavonoids influence the flavor and nutritional value of pecan nuts. However, limited information is available regarding the molecular mechanisms underlying pecan flavonoid biosynthesis. Here, we used a high ("YLC28") and a low ("Oconee") flavonoid content cultivar as the research objects. The changes in flavonoid content and the gene transcription patterns during kernel development were identified. Different accumulation patterns of total flavonoids (TF) and condensed tannins (CT) were observed between the two cultivars. The contents of TF and CT in "YLC28" were 1.76- and 2.67-fold higher levels than that of "Oconee" on 150 days after full bloom of female flowers, respectively. In total, 30 RNA-Seq libraries were constructed and sequenced. The upregulated genes in "YLC28" were highly enriched in flavonoid-related pathways. Thirty-three structural genes were identified, and the expression of two phenylalanine ammonia lyases, one chalcone synthase, one flavonoid 3',5'-hydroxylase, and one flavonol synthase exhibited high correlation (r ≥ 0.7, p < 0.01) with the condensed tannin content in "YLC28." A putative MYB transcription factor, CIL1093S0100, might act as a flavonoid biosynthesis repressor during kernel development. Altogether, these results will be useful for uncovering the molecular mechanisms of flavonoid biosynthesis and subsequently accelerating quality pecan breeding.

6.
Genome Biol ; 23(1): 14, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35012630

ABSTRACT

BACKGROUND: As a perennial crop, oil-Camellia possesses a long domestication history and produces high-quality seed oil that is beneficial to human health. Camellia oleifera Abel. is a sister species to the tea plant, which is extensively cultivated for edible oil production. However, the molecular mechanism of the domestication of oil-Camellia is still limited due to the lack of sufficient genomic information. RESULTS: To elucidate the genetic and genomic basis of evolution and domestication, here we report a chromosome-scale reference genome of wild oil-Camellia (2.95 Gb), together with transcriptome sequencing data of 221 cultivars. The oil-Camellia genome, assembled by an integrative approach of multiple sequencing technologies, consists of a large proportion of repetitive elements (76.1%) and high heterozygosity (2.52%). We construct a genetic map of high-density corrected markers by sequencing the controlled-pollination hybrids. Genome-wide association studies reveal a subset of artificially selected genes that are involved in the oil biosynthesis and phytohormone pathways. Particularly, we identify the elite alleles of genes encoding sugar-dependent triacylglycerol lipase 1, ß-ketoacyl-acyl carrier protein synthase III, and stearoyl-acyl carrier protein desaturases; these alleles play important roles in enhancing the yield and quality of seed oil during oil-Camellia domestication. CONCLUSIONS: We generate a chromosome-scale reference genome for oil-Camellia plants and demonstrate that the artificial selection of elite alleles of genes involved in oil biosynthesis contributes to oil-Camellia domestication.


Subject(s)
Camellia , Camellia/genetics , Camellia/metabolism , Domestication , Genome, Plant , Genome-Wide Association Study , Genomics , Humans , Metagenomics , Plant Oils/metabolism
7.
G3 (Bethesda) ; 11(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-34849807

ABSTRACT

Pecan is rich in bioactive components such as fatty acids (FAs) and flavonoids and is an important nut type worldwide. Therefore, the molecular mechanisms of phytochemical biosynthesis in pecan are a focus of research. Recently, a draft genome and several transcriptomes have been published. However, the full-length mRNA transcripts remain unclear, and the regulatory mechanisms behind the quality components biosynthesis and accumulation have not been fully investigated. In this study, single-molecule long-read sequencing technology was used to obtain full-length transcripts of pecan kernels. In total, 37,504 isoforms of 16,702 genes were mapped to the reference genome. The numbers of known isoforms, new isoforms, and novel isoforms were 9013 (24.03%), 26,080 (69.54%), and 2411 (6.51%), respectively. Over 80% of the transcripts (30,751, 81.99%) had functional annotations. A total of 15,465 alternative splicing (AS) events and 65,761 alternative polyadenylation events were detected; wherein, the retained intron was the predominant type (5652, 36.55%) of AS. Furthermore, 1894 long noncoding RNAs and 1643 transcription factors were predicted using bioinformatics methods. Finally, the structural genes associated with FA and flavonoid biosynthesis were characterized. A high frequency of AS accuracy (70.31%) was observed in FA synthesis-associated genes. This study provides a full-length transcriptome data set of pecan kernels, which will significantly enhance the understanding of the regulatory basis of phytochemical biosynthesis during pecan kernel maturation.


Subject(s)
Carya , Alternative Splicing , Carya/genetics , Gene Expression Profiling , Protein Isoforms/genetics , Transcriptome
8.
Biomolecules ; 9(6)2019 06 18.
Article in English | MEDLINE | ID: mdl-31216753

ABSTRACT

Phenolics are a group of important plant secondary metabolites that have been proven to possess remarkable antioxidant activity and to be beneficial for human health. Pecan nuts are an excellent source of dietary phenolics. In recent years, many studies have focused on the separation and biochemical analysis of pecan phenolics, but the molecular mechanisms of phenolic metabolism in pecans have not been fully elucidated, which significantly hinders quality breeding research for this plant. Chalcone synthase (CHS) plays crucial roles in phenolic biosynthesis. In this study, three Carya illinoinensisCHSs (CiCHS1, CiCHS2, and CiCHS3), were isolated and analyzed. CiCHS2 and CiCHS3 present high expression levels in different tissues, and they are also highly expressed at the initial developmental stages of kernels in three pecan genotypes. A correlation analysis was performed between the phenolic content and CHSs expression values during kernel development. The results indicated that the expression variations of CiCHS2 and CiCHS3 are significantly related to changes in total phenolic content. Therefore, CiCHSs play crucial roles in phenolic components synthesis in pecan. We believe that the isolation of CiCHSs is helpful for understanding phenolic metabolism in C. illinoinensis, which will improve quality breeding and resistance breeding studies in this plant.


Subject(s)
Acyltransferases/genetics , Acyltransferases/metabolism , Carya/enzymology , Carya/genetics , Acyltransferases/chemistry , Amino Acid Sequence , Carya/growth & development , Carya/metabolism , Cloning, Molecular , DNA, Complementary/genetics , Flavonoids/metabolism , Gene Expression Regulation, Plant , Genotype , Tannins/metabolism
9.
J Agric Food Chem ; 67(1): 148-158, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30563335

ABSTRACT

Pecan ( Carya illinoinensis) is an important tree nut throughout the world. The high concentration of flavonoid in its kernels makes it an excellent food with health benefits. However, the molecular basis of flavonoid biosynthesis in pecan remains unclear, which hinders quality breeding in this plant. Therefore, in order to find the crucial genes involved in flavonoid biosynthesis, the changes in flavonoid profiles and the transcriptomes of pecan kernels at four developmental stages (late water, gel, dough, and mature stages) were analyzed. As a result, the highest levels of total phenolic, condensed tannin, and flavan-3-ols were observed at the "late water stage". Catechin was the most abundant flavan-3-ol at different development stages. In total, 64 773 unigenes were obtained, and 46 924 (72.44%) unigenes were annotated. After differentially expressed gene (DEG) analysis, 12 750 unique DEGs were identified. Flavonoid-related DEGs of 36 structural genes and eight MYBs were obtained. The structural gene set contained three PALs, three CHSs, two CHIs, one F3H, two F3'Hs, two F3'5'Hs, one DFR, one ANS, two LARs, and two ANRs. The expression patterns of most of the structural genes were consistent with the changes in flavonoid profiles during kernel development. We believe that this RNA-Seq data set will provide valuable resources for unraveling the molecular mechanism of flavonoid metabolism in pecan and will significantly promote genetic studies and quality breeding in this plant.


Subject(s)
Carya/genetics , Carya/metabolism , Flavonoids/biosynthesis , Plant Proteins/genetics , RNA, Plant/genetics , Carya/growth & development , Flavonoids/metabolism , Nuts/genetics , Nuts/growth & development , Nuts/metabolism , Phenols/metabolism , Plant Proteins/metabolism , Proanthocyanidins/metabolism , RNA, Plant/metabolism , Sequence Analysis, RNA
10.
Front Microbiol ; 8: 2377, 2017.
Article in English | MEDLINE | ID: mdl-29250053

ABSTRACT

Vegetation restoration has been widely used in karst rocky desertification (KRD) areas of southwestern China, but the response of microbial community to revegetation has not been well characterized. We investigated the diversity, structure, and co-occurrence patterns of bacterial communities in soils of five vegetation types (grassland, shrubbery, secondary forest, pure plantation and mixed plantation) in KRD area using high-throughput sequencing of the 16S rRNA gene. Bray-Curtis dissimilarity analysis revealed that 15 bacterial community samples were clustered into five groups that corresponded very well to the five vegetation types. Shannon diversity was positively correlated with pH and Ca2+ content but negatively correlated with organic carbon, total nitrogen, and soil moisture. Redundancy analysis indicated that soil pH, Ca2+ content, organic carbon, total nitrogen, and soil moisture jointly influenced bacterial community structure. Co-occurrence network analysis revealed non-random assembly patterns of bacterial composition in the soils. Bryobacter, GR-WP33-30, and Rhizomicrobium were identified as keystone genera in co-occurrence network. These results indicate that diverse soil physicochemical properties and potential interactions among taxa during vegetation restoration may jointly affect the bacterial community structure in KRD regions.

11.
Environ Pollut ; 201: 150-60, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25800729

ABSTRACT

To explore the molecular basis of Sb tolerance mechanism in plant, a comparative proteomic analysis of both roots and leaves in Miscanthus sinensis has been conducted in combination with physiological and biochemical analyses. M. sinensis seedlings were exposed to different doses of Sb, and both roots and leaves were collected after 3 days of treatment. Two-dimensional gel electrophoresis (2-DE) and image analyses found that 29 protein spots showed 1.5-fold change in abundance in leaves and 19 spots in roots, of which 31 were identified by MALDI-TOF-MS and MALDI-TOF-TOF-MS. Proteins involved in antioxidant defense and stress response generally increased their expression all over the Sb treatments. In addition, proteins relative to transcription, signal transduction, energy metabolism and cell division and cell structure showed a variable expression pattern over Sb concentrations. Overall these findings provide new insights into the probable survival mechanisms by which M. sinensis could be adapting to Sb phytotoxicity.


Subject(s)
Antimony/pharmacology , Plant Leaves/drug effects , Plant Roots/drug effects , Poaceae/drug effects , Proteomics/methods , Stress, Physiological , Electrophoresis, Gel, Two-Dimensional , Environmental Exposure/analysis , Plant Proteins/metabolism , Seedlings/drug effects , Signal Transduction/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
Ying Yong Sheng Tai Xue Bao ; 23(6): 1728-32, 2012 Jun.
Article in Chinese | MEDLINE | ID: mdl-22937667

ABSTRACT

Soil loss prediction models such as universal soil loss equation (USLE) and its revised universal soil loss equation (RUSLE) are the useful tools for risk assessment of soil erosion and planning of soil conservation at regional scale. To make a rational estimation of vegetation cover and management factor, the most important parameters in USLE or RUSLE, is particularly important for the accurate prediction of soil erosion. The traditional estimation based on field survey and measurement is time-consuming, laborious, and costly, and cannot rapidly extract the vegetation cover and management factor at macro-scale. In recent years, the development of remote sensing technology has provided both data and methods for the estimation of vegetation cover and management factor over broad geographic areas. This paper summarized the research findings on the quantitative estimation of vegetation cover and management factor by using remote sensing data, and analyzed the advantages and the disadvantages of various methods, aimed to provide reference for the further research and quantitative estimation of vegetation cover and management factor at large scale.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Models, Theoretical , Plant Development , Soil/chemistry , Environmental Monitoring , Remote Sensing Technology
13.
Ying Yong Sheng Tai Xue Bao ; 20(2): 387-95, 2009 Feb.
Article in Chinese | MEDLINE | ID: mdl-19459381

ABSTRACT

In June 2007, the diurnal dynamics of light intensity, air temperature, air relative humidity, soil temperature, and surface soil (0-5 cm) water content of five land use types in the typical Karst zone of Lingyun City in Guangxi Zhuang Autonomous Region were observed. The results showed that different land use types altered the composition, coverage, and height of aboveground vegetation, which in turn changed the environment microclimate to different degree. The microclimate quality was in the order of forestland > shrub land > grassland > farmland > rock land. On rock land, the light intensity, air temperature, air relative humidity, soil temperature, and soil water content were higher, and the diurnal variation of the five climatic factors was notable, with the microclimatic conditions changed towards drier and hotter. Compared with those on rock land, the light intensity on forestland, shrub land, grassland, and farmland decreased by 96.4%, 52.0%, 17.0% and 44.2%, air temperature decreased by 30.1%, 20.2%, 12.7% and 17.8%, air relative humidity increased by 129.2%, 57.2%, 18.0% and 41.2%, soil temperature decreased by 11.5%, 8%, 2.5% and 5.5%, and soil water content increased by 42.6%, 33.2%, 15.7% and 14.0%, respectively. The five climatic factors on forestland and shrub land had lesser fluctuation, with the microclimate tended to cool and wet. Light intensity, air temperature, and soil temperature correlated positively with each other, and had negative correlations with air relative humidity and soil water content. A positive correlation was observed between air temperature and soil water content.


Subject(s)
Conservation of Natural Resources , Crops, Agricultural/growth & development , Environmental Monitoring , Microclimate , Trees/growth & development , Agriculture/methods , China , Poaceae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL