Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Trends Mol Med ; 29(9): 765-776, 2023 09.
Article En | MEDLINE | ID: mdl-37474378

Electronic health records (EHRs) have become increasingly relied upon as a source for biomedical research. One important research application of EHRs is the identification of biomarkers associated with specific patient states, especially within complex conditions. However, using EHRs for biomarker identification can be challenging because the EHR was not designed with research as the primary focus. Despite this challenge, the EHR offers huge potential for biomarker discovery research to transform our understanding of disease etiology and treatment and generate biological insights informing precision medicine initiatives. This review paper provides an in-depth analysis of how EHR data is currently used for phenotyping and identifying molecular biomarkers, current challenges and limitations, and strategies we can take to mitigate challenges going forward.


Biomedical Research , Electronic Health Records , Humans , Precision Medicine , Biomarkers
2.
medRxiv ; 2021 Feb 27.
Article En | MEDLINE | ID: mdl-33655273

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease-19 (COVID-19), a respiratory illness that can result in hospitalization or death. We investigated associations between rare genetic variants and seven COVID-19 outcomes in 543,213 individuals, including 8,248 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome-wide or when specifically focusing on (i) 14 interferon pathway genes in which rare deleterious variants have been reported in severe COVID-19 patients; (ii) 167 genes located in COVID-19 GWAS risk loci; or (iii) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, with results publicly browsable at https://rgc-covid19.regeneron.com.

3.
medRxiv ; 2021 Jun 10.
Article En | MEDLINE | ID: mdl-33619501

SARS-CoV-2 enters host cells by binding angiotensin-converting enzyme 2 (ACE2). Through a genome-wide association study, we show that a rare variant (MAF = 0.3%, odds ratio 0.60, P=4.5×10-13) that down-regulates ACE2 expression reduces risk of COVID-19 disease, providing human genetics support for the hypothesis that ACE2 levels influence COVID-19 risk. Further, we show that common genetic variants define a risk score that predicts severe disease among COVID-19 cases.

4.
Int J Obes (Lond) ; 41(2): 324-331, 2017 02.
Article En | MEDLINE | ID: mdl-27867202

BACKGROUND/OBJECTIVES: Central adiposity measures such as waist circumference (WC) and waist-to-hip ratio (WHR) are associated with cardiometabolic disorders independently of body mass index (BMI) and are gaining clinically utility. Several studies report genetic variants associated with central adiposity, but most utilize only European ancestry populations. Understanding whether the genetic associations discovered among mainly European descendants are shared with African ancestry populations will help elucidate the biological underpinnings of abdominal fat deposition. SUBJECTS/METHODS: To identify the underlying functional genetic determinants of body fat distribution, we conducted an array-wide association meta-analysis among persons of African ancestry across seven studies/consortia participating in the Population Architecture using Genomics and Epidemiology (PAGE) consortium. We used the Metabochip array, designed for fine-mapping cardiovascular-associated loci, to explore novel array-wide associations with WC and WHR among 15 945 African descendants using all and sex-stratified groups. We further interrogated 17 known WHR regions for African ancestry-specific variants. RESULTS: Of the 17 WHR loci, eight single-nucleotide polymorphisms (SNPs) located in four loci were replicated in the sex-combined or sex-stratified meta-analyses. Two of these eight independently associated with WHR after conditioning on the known variant in European descendants (rs12096179 in TBX15-WARS2 and rs2059092 in ADAMTS9). In the fine-mapping assessment, the putative functional region was reduced across all four loci but to varying degrees (average 40% drop in number of putative SNPs and 20% drop in genomic region). Similar to previous studies, the significant SNPs in the female-stratified analysis were stronger than the significant SNPs from the sex-combined analysis. No novel associations were detected in the array-wide analyses. CONCLUSIONS: Of 17 previously identified loci, four loci replicated in the African ancestry populations of this study. Utilizing different linkage disequilibrium patterns observed between European and African ancestries, we narrowed the suggestive region containing causative variants for all four loci.


Adiposity/genetics , Black People/genetics , Genetic Variation , White People/genetics , Adult , Body Fat Distribution , Female , Genetic Predisposition to Disease/ethnology , Genome-Wide Association Study , Genotype , Humans , Male , Obesity, Abdominal/ethnology , Obesity, Abdominal/genetics , Polymorphism, Single Nucleotide/genetics , Waist-Hip Ratio
5.
Pharmacogenomics J ; 16(3): 231-7, 2016 06.
Article En | MEDLINE | ID: mdl-26169577

The most common side effect of angiotensin-converting enzyme inhibitor (ACEi) drugs is cough. We conducted a genome-wide association study (GWAS) of ACEi-induced cough among 7080 subjects of diverse ancestries in the Electronic Medical Records and Genomics (eMERGE) network. Cases were subjects diagnosed with ACEi-induced cough. Controls were subjects with at least 6 months of ACEi use and no cough. A GWAS (1595 cases and 5485 controls) identified associations on chromosome 4 in an intron of KCNIP4. The strongest association was at rs145489027 (minor allele frequency=0.33, odds ratio (OR)=1.3 (95% confidence interval (CI): 1.2-1.4), P=1.0 × 10(-8)). Replication for six single-nucleotide polymorphisms (SNPs) in KCNIP4 was tested in a second eMERGE population (n=926) and in the Genetics of Diabetes Audit and Research in Tayside, Scotland (GoDARTS) cohort (n=4309). Replication was observed at rs7675300 (OR=1.32 (1.01-1.70), P=0.04) in eMERGE and at rs16870989 and rs1495509 (OR=1.15 (1.01-1.30), P=0.03 for both) in GoDARTS. The combined association at rs1495509 was significant (OR=1.23 (1.15-1.32), P=1.9 × 10(-9)). These results indicate that SNPs in KCNIP4 may modulate ACEi-induced cough risk.


Angiotensin-Converting Enzyme Inhibitors/adverse effects , Cough/chemically induced , Cough/genetics , Kv Channel-Interacting Proteins/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Computational Biology , Cough/ethnology , Databases, Genetic , Electronic Health Records , Female , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Logistic Models , Male , Multivariate Analysis , Odds Ratio , Phenotype , Risk Assessment , Risk Factors , Scotland , United States
6.
Curr Genet Med Rep ; 3(2): 92-100, 2015 Jun 01.
Article En | MEDLINE | ID: mdl-26146598

With the large volume of clinical and epidemiological data being collected, increasingly linked to extensive genotypic data, coupled with expanding high-performance computational resources, there are considerable opportunities for comprehensively exploring the networks of connections that exist between the phenome and the genome. These networks can be identified through Phenome-Wide Association Studies (PheWAS) where the association between a collection of genetic variants, or in some cases a particular clinical lab variable, and a wide and diverse range of phenotypes, diagnoses, traits, and/or outcomes are evaluated. This is a departure from the more familiar genome-wide association study (GWAS) approach, which has been used to identify single nucleotide polymorphisms (SNPs) associated with one outcome or a very limited phenotypic domain. In addition to highlighting novel connections between multiple phenotypes and elucidating more of the phenotype-genotype landscape, PheWAS can generate new hypotheses for further exploration, and can also be used to narrow the search space for research using comprehensive data collections. The complex results of PheWAS also have the potential for uncovering new mechanistic insights. We review here how the PheWAS approach has been used with data from epidemiological studies, clinical trials, and de-identified electronic health record data. We also review methodologies for the analyses underlying PheWAS, and emerging methods developed for evaluating the comprehensive results of PheWAS including genotype-phenotype networks. This review also highlights PheWAS as an important tool for identifying new biomarkers, elucidating the genetic architecture of complex traits, and uncovering pleiotropy. There are many directions and new methodologies for the future of PheWAS analyses, from the phenotypic data to the genetic data, and herein we also discuss some of these important future PheWAS developments.

7.
Genes Immun ; 16(1): 1-7, 2015.
Article En | MEDLINE | ID: mdl-25297839

Herpes zoster, commonly referred to as shingles, is caused by the varicella zoster virus (VZV). VZV initially manifests as chicken pox, most commonly in childhood, can remain asymptomatically latent in nerve tissues for many years and often re-emerges as shingles. Although reactivation may be related to immune suppression, aging and female sex, most inter-individual variability in re-emergence risk has not been explained to date. We performed a genome-wide association analyses in 22,981 participants (2280 shingles cases) from the electronic Medical Records and Genomics Network. Using Cox survival and logistic regression, we identified a genomic region in the combined and European ancestry groups that has an age of onset effect reaching genome-wide significance (P>1.0 × 10(-8)). This region tags the non-coding gene HCP5 (HLA Complex P5) in the major histocompatibility complex. This gene is an endogenous retrovirus and likely influences viral activity through regulatory functions. Variants in this genetic region are known to be associated with delay in development of AIDS in people infected by HIV. Our study provides further suggestion that this region may have a critical role in viral suppression and could potentially harbor a clinically actionable variant for the shingles vaccine.


Genetic Predisposition to Disease , Genome-Wide Association Study , Herpes Zoster/genetics , Herpesvirus 3, Human/physiology , RNA, Untranslated/genetics , Age of Onset , Aged , Algorithms , Cohort Studies , Electronic Health Records , Female , Herpes Zoster/epidemiology , Herpes Zoster/ethnology , Herpes Zoster/immunology , Humans , Male , Middle Aged , RNA, Long Noncoding , Retrospective Studies , United States/epidemiology , United States/ethnology
8.
Clin Pharmacol Ther ; 96(4): 482-9, 2014 Oct.
Article En | MEDLINE | ID: mdl-24960519

We describe here the design and initial implementation of the eMERGE-PGx project. eMERGE-PGx, a partnership of the Electronic Medical Records and Genomics Network and the Pharmacogenomics Research Network, has three objectives: (i) to deploy PGRNseq, a next-generation sequencing platform assessing sequence variation in 84 proposed pharmacogenes, in nearly 9,000 patients likely to be prescribed drugs of interest in a 1- to 3-year time frame across several clinical sites; (ii) to integrate well-established clinically validated pharmacogenetic genotypes into the electronic health record with associated clinical decision support and to assess process and clinical outcomes of implementation; and (iii) to develop a repository of pharmacogenetic variants of unknown significance linked to a repository of electronic health record-based clinical phenotype data for ongoing pharmacogenomics discovery. We describe site-specific project implementation and anticipated products, including genetic variant and phenotype data repositories, novel variant association studies, clinical decision support modules, clinical and process outcomes, approaches to managing incidental findings, and patient and clinician education methods.


Databases, Genetic , Electronic Health Records/organization & administration , Genetic Variation , Adolescent , Aged , Child , Drug Therapy , Female , Genetic Association Studies , Genotype , Humans , Knowledge Bases , Male , Middle Aged , Pharmacogenetics , Phenotype , Pilot Projects , Sequence Analysis, DNA , Young Adult
9.
Pharmacogenomics J ; 14(4): 336-42, 2014 Aug.
Article En | MEDLINE | ID: mdl-24513692

Peripheral neuropathy is a common dose-limiting toxicity for patients treated with paclitaxel. For most individuals, there are no known risk factors that predispose patients to the adverse event, and pathogenesis for paclitaxel-induced peripheral neuropathy is unknown. Determining whether there is a heritable component to paclitaxel-induced peripheral neuropathy would be valuable in guiding clinical decisions and may provide insight into treatment of and mechanisms for the toxicity. Using genotype and patient information from the paclitaxel arm of CALGB 40101 (Alliance), a phase III clinical trial evaluating adjuvant therapies for breast cancer in women, we estimated the variance in maximum grade and dose at first instance of sensory peripheral neuropathy. Our results suggest that paclitaxel-induced neuropathy has a heritable component, driven in part by genes involved in axon outgrowth. Disruption of axon outgrowth may be one of the mechanisms by which paclitaxel treatment results in sensory peripheral neuropathy in susceptible patients.


Antineoplastic Agents, Phytogenic/adverse effects , Axons/physiology , Breast Neoplasms/drug therapy , Multifactorial Inheritance , Paclitaxel/adverse effects , Peripheral Nervous System Diseases/chemically induced , Sensory Receptor Cells/drug effects , Breast Neoplasms/genetics , Female , Humans , Peripheral Nervous System Diseases/genetics , Polymorphism, Single Nucleotide
10.
Clin Pharmacol Ther ; 92(2): 235-42, 2012 Aug.
Article En | MEDLINE | ID: mdl-22739144

Routine integration of genotype data into drug decision making could improve patient safety, particularly if many relevant genetic variants can be assayed simultaneously before prescribing the target drug. The frequency of opportunities for pharmacogenetic prescribing and the potential adverse events (AEs) mitigated are unknown. We examined the frequency with which 56 medications with known outcomes influenced by variant alleles were prescribed in a cohort of 52,942 medical home patients at Vanderbilt University Medical Center (VUMC). Within a 5-year window, we estimated that 64.8% (95% confidence interval (CI): 64.4-65.2%) of individuals were exposed to at least one medication with an established pharmacogenetic association. Using previously published results for six medications with severe, well-characterized, genetically linked AEs, we estimated that 383 events (95% CI, 212-552) could have been prevented with an effective preemptive genotyping program. Our results suggest that multiplexed, preemptive genotyping may represent an efficient alternative approach to current single-use ("reactive") methods and may also improve safety.


Drug-Related Side Effects and Adverse Reactions/genetics , Patient Safety , Pharmacogenetics/methods , Adult , Aged , Female , Genotype , Humans , Male , Middle Aged , Polymorphism, Genetic
11.
Clin Pharmacol Ther ; 91(2): 257-63, 2012 Feb.
Article En | MEDLINE | ID: mdl-22190063

Variants in ABCB1 and CYP2C19 have been identified as predictors of cardiac events during clopidogrel therapy initiated after myocardial infarction (MI) or percutaneous coronary intervention (PCI). In addition, PON1 has recently been associated with stent thrombosis. The reported effects of these variants have not yet been replicated in a real-world setting. We used BioVU, the Vanderbilt DNA repository linked to de-identified electronic health records (EHRs), to find data on patients who were on clopidogrel treatment after an MI and/or a PCI; among these, we identified those who had experienced one or more recurrent cardiac events while on treatment (cases, n = 225) and those who had not experienced any cardiac event while on treatment (controls, n = 468). We found that CYP2C19*2 (hazard ratio (HR) 1.54, 95% confidence interval (CI) 1.16-2.06, P = 0.003) and ABCB1 (HR 1.28, 95% CI 1.04-1.57, P = 0.018), but not PON1 (HR 0.91, 95% CI 0.73-1.12, P = 0.370), were associated with recurrent events. In this population, genetic signals for clopidogrel resistance in ABCB1 and CYP2C19 were replicated, supporting the use of EHRs for pharmacogenomic studies. Our data do not show an association between PON1 and recurrent cardiovascular events.


Databases, Nucleic Acid , Electronic Health Records , Myocardial Infarction/drug therapy , Pharmacogenetics/methods , Platelet Aggregation Inhibitors/therapeutic use , Thrombosis/drug therapy , Ticlopidine/analogs & derivatives , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Aged , Aryl Hydrocarbon Hydroxylases/genetics , Aryldialkylphosphatase/genetics , Clopidogrel , Cytochrome P-450 CYP2C19 , Female , Genotype , Humans , Male , Polymorphism, Genetic , Stents , Ticlopidine/therapeutic use , Treatment Outcome
12.
Genet Epidemiol ; 35(5): 410-22, 2011 Jul.
Article En | MEDLINE | ID: mdl-21594894

The field of phenomics has been investigating network structure among large arrays of phenotypes, and genome-wide association studies (GWAS) have been used to investigate the relationship between genetic variation and single diseases/outcomes. A novel approach has emerged combining both the exploration of phenotypic structure and genotypic variation, known as the phenome-wide association study (PheWAS). The Population Architecture using Genomics and Epidemiology (PAGE) network is a National Human Genome Research Institute (NHGRI)-supported collaboration of four groups accessing eight extensively characterized epidemiologic studies. The primary focus of PAGE is deep characterization of well-replicated GWAS variants and their relationships to various phenotypes and traits in diverse epidemiologic studies that include European Americans, African Americans, Mexican Americans/Hispanics, Asians/Pacific Islanders, and Native Americans. The rich phenotypic resources of PAGE studies provide a unique opportunity for PheWAS as each genotyped variant can be tested for an association with the wide array of phenotypic measurements available within the studies of PAGE, including prevalent and incident status for multiple common clinical conditions and risk factors, as well as clinical parameters and intermediate biomarkers. The results of PheWAS can be used to discover novel relationships between SNPs, phenotypes, and networks of interrelated phenotypes; identify pleiotropy; provide novel mechanistic insights; and foster hypothesis generation. The PAGE network has developed infrastructure to support and perform PheWAS in a high-throughput manner. As implementing the PheWAS approach has presented several challenges, the infrastructure and methodology, as well as insights gained in this project, are presented herein to benefit the larger scientific community.


Genetic Association Studies/statistics & numerical data , Databases, Genetic , Ethnicity/genetics , Genetic Variation , Genome-Wide Association Study/statistics & numerical data , Humans , Models, Genetic , Models, Statistical , Phenotype , Polymorphism, Single Nucleotide , Racial Groups/genetics
13.
Genes Immun ; 12(5): 335-40, 2011 Jul.
Article En | MEDLINE | ID: mdl-21346779

Gene-gene interactions are proposed as an important component of the genetic architecture of complex diseases, and are just beginning to be evaluated in the context of genome-wide association studies (GWAS). In addition to detecting epistasis, a benefit to interaction analysis is that it also increases power to detect weak main effects. We conducted a knowledge-driven interaction analysis of a GWAS of 931 multiple sclerosis (MS) trios to discover gene-gene interactions within established biological contexts. We identify heterogeneous signals, including a gene-gene interaction between CHRM3 (muscarinic cholinergic receptor 3) and MYLK (myosin light-chain kinase) (joint P=0.0002), an interaction between two phospholipase C-ß isoforms, PLCß1 and PLCß4 (joint P=0.0098), and a modest interaction between ACTN1 (actinin alpha 1) and MYH9 (myosin heavy chain 9) (joint P=0.0326), all localized to calcium-signaled cytoskeletal regulation. Furthermore, we discover a main effect (joint P=5.2E-5) previously unidentified by single-locus analysis within another related gene, SCIN (scinderin), a calcium-binding cytoskeleton regulatory protein. This work illustrates that knowledge-driven interaction analysis of GWAS data is a feasible approach to identify new genetic effects. The results of this study are among the first gene-gene interactions and non-immune susceptibility loci for MS. Further, the implicated genes cluster within inter-related biological mechanisms that suggest a neurodegenerative component to MS.


Multiple Sclerosis/genetics , Calcium/metabolism , Cytoskeleton/genetics , Cytoskeleton/metabolism , Disease Susceptibility , Epistasis, Genetic , Genetic Loci , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide/genetics , Signal Transduction/genetics
14.
Pharmacogenomics J ; 8(1): 71-7, 2008 Feb.
Article En | MEDLINE | ID: mdl-17684475

Peripheral neuropathy (PN) due to mitochondrial injury complicates HIV therapy with some nucleoside reverse transcriptase inhibitors (NRTIs). Variation in the mitochondrial genome may influence susceptibility to NRTI toxicities. Two non-synonymous mitochondrial DNA polymorphisms, MTND1*LHON4216C (4216C) and MTND2*LHON4917G (4917G) were characterized in HIV-infected participants exposed to NRTIs in a randomized clinical trial. Among 250 self-identified white, non-Hispanic participants, symptomatic PN (> or = grade 1) developed in 70 (28%). Both 4216C (odds ratio (OR)=1.98 (95% confidence interval (CI) 1.05-3.75); P=0.04) and 4917G (OR=2.93 (95% CI 1.25-6.89); P=0.01) were more frequent in PN cases. These two polymorphisms remained independently associated with PN after adjusting for age, baseline CD4 count, plasma HIV RNA level, and NRTI randomization arm; 4216C (OR=2.0 (95% CI 1.1-4.0) P=0.04) and 4917G (OR=5.5 (95% CI 1.6-18.7) P<0.01). When 4917G individuals were excluded from the analysis, the association with 4216C was no longer seen. The mitochondrial 4917G polymorphism may increase susceptibility to NRTI-associated PN.


Antiretroviral Therapy, Highly Active/adverse effects , DNA, Mitochondrial/genetics , Mitochondria/metabolism , NADH Dehydrogenase/genetics , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/genetics , Adult , DNA/genetics , Female , Gene Frequency , Genotype , Haplotypes , Humans , Male , Middle Aged , Polymorphism, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Treatment Outcome
15.
Clin Pharmacol Ther ; 83(1): 122-9, 2008 Jan.
Article En | MEDLINE | ID: mdl-17522594

We examined the effect of -58 C/T and BE1 +9/-9 polymorphisms in the bradykinin B2 receptor gene on forearm vascular resistance (FVR) before and during intrabrachial artery infusion of the B2 receptor-, endothelium-dependent agonist bradykinin and the endothelium-independent agonist sodium nitroprusside in 228 normotensive subjects. In 166 white Americans, systolic blood pressure (SBP) and pulse pressure were highest in the BE1 +9/+9 group (118+/-2 and 51+/-2 mm Hg, respectively; P<0.05 versus -9/-9 for either), intermediate in the +9/-9 group (114+/-1 and 49+/-1 mm Hg, P<0.05 versus -9/-9 for pulse pressure), and lowest in the -9/-9 group (110+/-2 and 44+/-2 mm Hg). In 62 black Americans, FVR was 25% higher in the BE1 +9/+9 group compared with the BE1 +9/-9 and -9/-9 groups at baseline (P=0.038) or during bradykinin (P=0.03). Increased SBP or vascular resistance may contribute to increased left ventricular mass reported previously in individuals with the BE1+9/+9 genotype.


Black or African American/genetics , Blood Pressure/genetics , Forearm/blood supply , Polymorphism, Genetic , Receptor, Bradykinin B2/genetics , Vascular Resistance/genetics , White People/genetics , Adult , Blood Flow Velocity/drug effects , Blood Pressure/drug effects , Bradykinin/administration & dosage , Dose-Response Relationship, Drug , Female , Gene Frequency , Genotype , Humans , Infusions, Intra-Arterial , Male , Nitroprusside/administration & dosage , Phenotype , Receptor, Bradykinin B2/agonists , Regional Blood Flow/genetics , Vascular Resistance/drug effects , Vasodilator Agents/administration & dosage
16.
Ann Hum Genet ; 70(Pt 3): 281-92, 2006 May.
Article En | MEDLINE | ID: mdl-16674551

Gene-gene interactions are likely involved in many complex genetic disorders and new statistical approaches for detecting such interactions are needed. We propose a multi-analytic paradigm, relying on convergence of evidence across multiple analysis tools. Our paradigm tests for main and interactive effects, through allele, genotype and haplotype association. We applied our paradigm to genotype data from three GABAA receptor subunit genes (GABRB3, GABRA5, and GABRG3) on chromosome 15 in 470 Caucasian autism families. Previously implicated in autism, we hypothesized these genes interact to contribute to risk. We detected no evidence of main effects by allelic (PDT, FBAT) or genotypic (genotype-PDT) association at individual markers. However, three two-marker haplotypes in GABRG3 were significant (HBAT). We detected no significant multi-locus associations using genotype-PDT analysis or the EMDR data reduction program. However, consistent with the haplotype findings, the best single locus EMDR model selected a GABRG3 marker. Further, the best pairwise genotype-PDT result involved GABRB3 and GABRG3, and all multi-locus EMDR models also selected GABRB3 and GABRG3 markers. GABA receptor subunit genes do not significantly interact to contribute to autism risk in our overall data set. However, the consistency of results across analyses suggests that we have defined a useful framework for evaluating gene-gene interactions.


Autistic Disorder/genetics , Chromosomes, Human, Pair 15 , Computational Biology/methods , Genetic Predisposition to Disease , Receptors, GABA-A/genetics , Chromosome Mapping , Data Interpretation, Statistical , Epistasis, Genetic , Haplotypes , Humans , Models, Genetic , Polymorphism, Single Nucleotide , Protein Subunits/genetics , Risk Factors
17.
Genes Immun ; 7(4): 310-5, 2006 Jun.
Article En | MEDLINE | ID: mdl-16625214

Multiple sclerosis (MS) is a common disease of the central nervous system characterized by inflammation, myelin loss, gliosis, varying degrees of axonal pathology, and progressive neurological dysfunction. Multiple sclerosis exhibits many of the characteristics that distinguish complex genetic disorders including polygenic inheritance and environmental exposure risks. Here, we used a highly efficient multilocus genotyping assay representing variation in 34 genes associated with inflammatory pathways to explore gene-gene interactions and disease susceptibility in a well-characterized African-American case-control MS data set. We applied the multifactor dimensionality reduction (MDR) test to detect epistasis, and identified single-IL4R(Q576R)- and three-IL4R(Q576R), IL5RA(-80), CD14(-260)- locus association models that predict MS risk with 75-76% accuracy (P<0.01). These results demonstrate the importance of exploring both main effects and gene-gene interactions in the study of complex diseases.


Black or African American/genetics , Genetic Predisposition to Disease , Lipopolysaccharide Receptors/genetics , Multifactorial Inheritance , Multiple Sclerosis/genetics , Receptors, Interleukin-4/genetics , Receptors, Interleukin/genetics , Case-Control Studies , Epistasis, Genetic , Female , Gene Deletion , Genotype , Humans , Interleukin-5 Receptor alpha Subunit , Male , Multiple Sclerosis/immunology , Polymorphism, Genetic , Polymorphism, Single Nucleotide
18.
Genet Epidemiol ; 30(2): 111-23, 2006 Feb.
Article En | MEDLINE | ID: mdl-16374833

It is now well recognized that gene-gene and gene-environment interactions are important in complex diseases, and statistical methods to detect interactions are becoming widespread. Traditional parametric approaches are limited in their ability to detect high-order interactions and handle sparse data, and standard stepwise procedures may miss interactions that occur in the absence of detectable main effects. To address these limitations, the multifactor dimensionality reduction (MDR) method [Ritchie et al., 2001: Am J Hum Genet 69:138-147] was developed. The MDR is well-suited for examining high-order interactions and detecting interactions without main effects. The MDR was originally designed to analyze balanced case-control data. The analysis can use family data, but requires a single matched pair be selected from each family. This may be a discordant sib pair, or may be constructed from triad data when parents are available. To take advantage of additional affected and unaffected siblings requires a test statistic that measures the association of genotype with disease in general nuclear families. We have developed a novel test, the MDR-PDT, by merging the MDR method with the genotype-Pedigree Disequilibrium Test (geno-PDT)[Martin et al., 2003: Genet Epidemiol 25:203-213]. MDR-PDT allows identification of single-locus effects or joint effects of multiple loci in families of diverse structure. We present simulations to demonstrate the validity of the test and evaluate its power. To examine its applicability to real data, we applied the MDR-PDT to data from candidate genes for Alzheimer disease (AD) in a large family dataset. These results show the utility of the MDR-PDT for understanding the genetics of complex diseases.


Alzheimer Disease/genetics , Genotype , Models, Genetic , Models, Statistical , Nuclear Family , Pedigree , Algorithms , Humans , Polymorphism, Genetic
19.
Am J Hum Genet ; 77(3): 377-88, 2005 Sep.
Article En | MEDLINE | ID: mdl-16080114

Autism is a common neurodevelopmental disorder with a significant genetic component. Existing research suggests that multiple genes contribute to autism and that epigenetic effects or gene-gene interactions are likely contributors to autism risk. However, these effects have not yet been identified. Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, has been implicated in autism etiology. Fourteen known autosomal GABA receptor subunit genes were studied to look for the genes associated with autism and their possible interactions. Single-nucleotide polymorphisms (SNPs) were screened in the following genes: GABRG1, GABRA2, GABRA4, and GABRB1 on chromosome 4p12; GABRB2, GABRA6, GABRA1, GABRG2, and GABRP on 5q34-q35.1; GABRR1 and GABRR2 on 6q15; and GABRA5, GABRB3, and GABRG3 on 15q12. Intronic and/or silent mutation SNPs within each gene were analyzed in 470 white families with autism. Initially, SNPs were used in a family-based study for allelic association analysis--with the pedigree disequilibrium test and the family-based association test--and for genotypic and haplotypic association analysis--with the genotype-pedigree disequilibrium test (geno-PDT), the association in the presence of linkage (APL) test, and the haplotype family-based association test. Next, with the use of five refined independent marker sets, extended multifactor-dimensionality reduction (EMDR) analysis was employed to identify the models with locus joint effects, and interaction was further verified by conditional logistic regression. Significant allelic association was found for markers RS1912960 (in GABRA4; P = .01) and HCV9866022 (in GABRR2; P = .04). The geno-PDT found significant genotypic association for HCV8262334 (in GABRA2), RS1912960 and RS2280073 (in GABRA4), and RS2617503 and RS12187676 (in GABRB2). Consistent with the allelic and genotypic association results, EMDR confirmed the main effect at RS1912960 (in GABRA4). EMDR also identified a significant two-locus gene-gene effect model involving RS1912960 in GABRA4 and RS2351299 in GABRB1. Further support for this two-locus model came from both the multilocus geno-PDT and the APL test, which indicated a common genotype and haplotype combination positively associated with disease. Finally, these results were also consistent with the results from the conditional logistic regression, which confirmed the interaction between GABRA4 and GABRB1 (odds ratio = 2.9 for interaction term; P = .002). Through the convergence of all analyses, we conclude that GABRA4 is involved in the etiology of autism and potentially increases autism risk through interaction with GABRB1. These results support the hypothesis that GABA receptor subunit genes are involved in autism, most likely via complex gene-gene interactions.


Autistic Disorder/genetics , Genetic Predisposition to Disease/genetics , Models, Genetic , Receptors, GABA-A/genetics , Genetic Markers/genetics , Genetic Testing , Genotype , Haplotypes/genetics , Humans , Logistic Models , Multifactorial Inheritance/genetics , Pedigree , Polymorphism, Single Nucleotide , United States , White People/genetics
20.
Diabetologia ; 47(3): 549-554, 2004 Mar.
Article En | MEDLINE | ID: mdl-14730379

AIMS/HYPOTHESIS: Type 2 diabetes mellitus is a complex genetic disease, which results from interactions between multiple genes and environmental factors without any single factor having strong independent effects. This study was done to identify gene to gene interactions which could be associated with the risk of Type 2 diabetes. METHODS: We genotyped 23 different loci in the 15 candidate genes of Type 2 diabetes in 504 unrelated Type 2 diabetic patients and 133 non-diabetic control subjects. We analysed gene to gene interactions among 23 polymorphic loci using the multifactor-dimensionality reduction (MDR) method, which has been shown to be effective for detecting and characterising gene to gene interactions in case-control studies with relatively small samples. RESULTS: The MDR analysis showed a significant gene to gene interaction between the Ala55Val polymorphism in the uncoupling protein 2 gene ( UCP2) and the 161C>T polymorphism in the exon 6 of peroxisome proliferator-activated receptor gamma ( PPARgamma) gene. This interaction showed the maximum consistency and minimum prediction error among all gene to gene interaction models evaluated. Moreover, the combination of the UCP2 55 Ala/Val heterozygote and the PPARgamma 161 C/C homozygote was associated with a reduced risk of Type 2 diabetes (odds ratio: 0.51, 95% CI: 0.34 to 0.77, p=0.0016). CONCLUSIONS/INTERPRETATION: Using the MDR method, we showed a two-locus interaction between the UCP2 and PPARgamma genes among 23 loci in the candidate genes of Type 2 diabetes. The determination of such genotype combinations contributing to Type 2 diabetes mellitus could provide a new tool for identifying high-risk individuals.


Diabetes Mellitus, Type 2/genetics , Membrane Transport Proteins/genetics , Mitochondrial Proteins/genetics , PPAR gamma/genetics , Aged , Amino Acid Substitution , Chromosome Mapping , Female , Humans , Ion Channels , Male , Middle Aged , Models, Genetic , Polymorphism, Genetic , Uncoupling Protein 2
...