Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 16(4): 6631-44, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25811926

ABSTRACT

Polyphosphates have been found in all cell types examined to date and play diverse roles depending on the cell type. In eukaryotic organisms, polyphosphates have been mainly investigated in mammalian cells with few studies on insects. Some studies have demonstrated that a pyrophosphatase regulates polyphosphate metabolism, and most of them were performed on trypanosomatids. Here, we investigated the effects of sPPase gene knocked down in oogenesis and polyphosphate metabolism in the red flour beetle (Tribolium castaneum). A single sPPase gene was identified in insect genome and is maternally provided at the mRNA level and not restricted to any embryonic or extraembryonic region during embryogenesis. After injection of Tc-sPPase dsRNA, female survival was reduced to 15% of the control (dsNeo RNA), and egg laying was completely impaired. The morphological analysis by nuclear DAPI staining of the ovarioles in Tc-sPPase dsRNA-injected females showed that the ovariole number is diminished, degenerated oocytes can be observed, and germarium is reduced. The polyphosphate level was increased in cytoplasmic and nuclear fractions in Tc-sPPase RNAi; Concomitantly, the exopolyphosphatase activity decreased in both fractions. Altogether, these data suggest a role for sPPase in the regulation on polyphosphate metabolism in insects and provide evidence that Tc-sPPase is essential to oogenesis.


Subject(s)
Insect Proteins , Oogenesis , Polyphosphates/metabolism , Pyrophosphatases/genetics , Tribolium/enzymology , Animals , Female , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Insect Proteins/metabolism , Phylogeny , Pyrophosphatases/metabolism
2.
Regul Pept ; 132(1-3): 67-73, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16249039

ABSTRACT

In this work we determined by telemetry the cardiovascular effects produced by Ang II infusion on blood pressure (BP) and heart rate (HR) in aged rats. Male Wistar aged (48-52 weeks) and young (12 weeks) rats were used. Ang II (6 microg/h, young, n=6; aged, n=6) or vehicle (0.9% NaCl 1 microl/h, young, n=4; aged, n=5) were infused subcutaneously for 7 days, using osmotic mini-pump. The basal diurnal and nocturnal BP values were higher in aged rats (day: 98+/-0.3 mm Hg, night: 104+/-0.4 mm Hg) than in the young rats (day: 92+/-0.2 mm Hg, night: 99+/-0.2 mm Hg). In contrast, the basal diurnal and nocturnal HR values were significantly smaller in the aged rats. Ang II infusion produced a greater increase in the diurnal BP in the aged rats (Delta MAP=37+/-1.8 mm Hg) compared to the young ones (Delta MAP=30+/-3.5 mm Hg). In contrast, the nocturnal MAP increase was similar in both groups (young rats; Delta MAP=22+/-3.0 mm Hg, aged rats; Delta MAP=24+/-2.6 mm Hg). During Ang II infusion HR decreased transiently in the young rats. An opposite trend was observed in the aged rats. Ang II infusion also inverted the BP circadian rhythm, in both groups. No changes in HR circadian rhythm were observed. These differences suggest that the aging process alters in a different way Ang II-sensitive neural pathways involved in the control of autonomic activity.


Subject(s)
Aging/physiology , Angiotensin II/pharmacology , Blood Pressure/drug effects , Heart Rate/drug effects , Animals , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL