Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38752427

ABSTRACT

Bone morphogenic protein (BMP) signaling plays an essential and highly conserved role in embryo axial patterning in animal species. However, in mammalian embryos, which develop inside the mother, early development includes a preimplantation stage, which does not occur in externally developing embryos. During preimplantation, the epiblast is segregated from extra-embryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling is imprecisely defined in mouse early embryos. Here, we show that, in contrast to previous reports, BMP signaling (SMAD1/5/9 phosphorylation) is not detectable until implantation when it is detected in the primitive endoderm - an extra-embryonic lineage. Moreover, preimplantation development appears to be normal following deletion of maternal and zygotic Smad4, an essential effector of canonical BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extra-embryonic cell types drives epiblast morphogenesis postimplantation.


Subject(s)
Embryo Implantation , Germ Layers , Morphogenesis , Signal Transduction , Smad4 Protein , Animals , Smad4 Protein/metabolism , Smad4 Protein/genetics , Germ Layers/metabolism , Embryo Implantation/genetics , Mice , Morphogenesis/genetics , Female , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Gene Expression Regulation, Developmental , Embryonic Development/genetics , Mice, Knockout , Embryo, Mammalian/metabolism , Endoderm/metabolism , Endoderm/embryology , Blastocyst/metabolism , Blastocyst/cytology
2.
bioRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38328075

ABSTRACT

Bone Morphogenic Protein (BMP) signaling plays an essential and highly conserved role in axial patterning in embryos of many externally developing animal species. However, in mammalian embryos, which develop inside the mother, early development includes an additional stage known as preimplantation. During preimplantation, the epiblast lineage is segregated from the extraembryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling in mouse preimplantation is imprecisely defined. We show that, in contrast to prior reports, BMP signaling (as reported by SMAD1/5/9 phosphorylation) is not detectable until implantation, when it is detected in the primitive endoderm - an extraembryonic lineage. Moreover, preimplantation development appears normal following deletion of maternal and zygotic Smad4, an essential effector of BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extraembryonic cell types drives epiblast morphogenesis post-implantation.

SELECTION OF CITATIONS
SEARCH DETAIL
...