Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Article in English | MEDLINE | ID: mdl-39214188

ABSTRACT

BACKGROUND: Clostridioides difficile (C. difficile) remains the leading cause of healthcare-associated diarrhoea, posing treatment challenges because of antibiotic resistance and high relapse rates. Faecal microbiota transplantation is a novel treatment strategy to prevent relapses of C. difficile infection (CDI), however, the exact components conferring colonization resistance are unknown, hampering its translation to a medicinal product. The development of novel products independent of antibiotics, which increase colonization resistance or induce protective immune mechanisms is urgently needed. OBJECTIVES: To establish a framework for a Controlled Human Infection Model (CHIM) of C. difficile, in which healthy volunteers are exposed to toxigenic C. difficile spores, offering the possibility to test novel approaches and identify microbiota and immunological targets. Whereas experimental exposure to non-toxigenic C. difficile has been done before, a toxigenic C. difficile CHIM faces ethical, scientific, logistical, and biosafety challenges. SOURCES: Specific challenges in developing a C. difficile CHIM were discussed by a group of international experts during a workshop organized by Inno4Vac, an Innovative Health Initiative-funded consortium. CONTENT: The experts agreed that the main challenges are: developing a clinically relevant CHIM that induces mild to moderate CDI symptoms but not severe CDI, determining the optimal C. difficile inoculum dose, and understanding the timing and duration of antibiotic pretreatment in inducing susceptibility to CDI in healthy volunteers. IMPLICATIONS: Should these challenges be tackled, a C. difficile CHIM will not only provide a way forward for the testing of novel products but also offer a framework for a better understanding of the pathophysiology, pathogenesis, and immunology of C. difficile colonization and infection.

2.
Nat Commun ; 15(1): 5960, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013877

ABSTRACT

Hookworm infection remains a significant public health concern, particularly in low- and middle-income countries, where mass drug administration has not stopped reinfection. Developing a vaccine is crucial to complement current control measures, which necessitates a thorough understanding of host immune responses. By leveraging controlled human infection models and high-dimensional immunophenotyping, here we investigated the immune remodeling following infection with 50 Necator americanus L3 hookworm larvae in four naïve volunteers over two years of follow-up and compared the profiles with naturally infected populations in endemic areas. Increased plasmacytoid dendritic cell frequency and diminished responsiveness to Toll-like receptor 7/8 ligand were observed in both controlled and natural infection settings. Despite the increased CD45RA+ regulatory T cell (Tregs) frequencies in both settings, markers of Tregs function, including inducible T-cell costimulatory (ICOS), tumor necrosis factor receptor 2 (TNFR2), and latency-associated peptide (LAP), as well as in vitro Tregs suppressive capacity were higher in natural infections. Taken together, this study provides unique insights into the immunological trajectories following a first-in-life hookworm infection compared to natural infections.


Subject(s)
Dendritic Cells , Necator americanus , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/immunology , Animals , Dendritic Cells/immunology , Necator americanus/immunology , Male , Adult , Necatoriasis/immunology , Hookworm Infections/immunology , Hookworm Infections/parasitology , Female , Endemic Diseases , Young Adult , Immunophenotyping
3.
Sci Immunol ; 9(97): eadl1965, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968336

ABSTRACT

Schistosomiasis is an infection caused by contact with Schistosoma-contaminated water and affects more than 230 million people worldwide with varying morbidity. The roles of T helper 2 (TH2) cells and regulatory immune responses in chronic infection are well documented, but less is known about human immune responses during acute infection. Here, we comprehensively map immune responses during controlled human Schistosoma mansoni infection using male or female cercariae. Immune responses to male or female parasite single-sex infection were comparable. An early TH1-biased inflammatory response was observed at week 4 after infection, which was particularly apparent in individuals experiencing symptoms of acute schistosomiasis. By week 8 after infection, inflammatory responses were followed by an expansion of TH2 and regulatory cell subsets. This study demonstrates the shift from TH1 to both TH2 and regulatory responses, typical of chronic schistosomiasis, in the absence of egg production and provides immunological insight into the clinical manifestations of acute schistosomiasis.


Subject(s)
Schistosoma mansoni , Schistosomiasis mansoni , Th2 Cells , Humans , Female , Animals , Male , Th2 Cells/immunology , Schistosomiasis mansoni/immunology , Schistosoma mansoni/immunology , Inflammation/immunology , Adult , Th1 Cells/immunology , Young Adult , Adolescent , Cytokines/immunology , Schistosomiasis/immunology , Schistosomiasis/parasitology
4.
J Nucl Med ; 65(8): 1301-1306, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39025649

ABSTRACT

Liver cancer is a leading cause of cancer deaths worldwide. Surgical resection of superficial hepatic lesions is increasingly guided by the disrupted bile excretion of the fluorescent dye indocyanine green (ICG). To extend this approach to deeper lesions, a dedicated bimodal tracer that facilitates both fluorescence guidance and radioguidance was developed. Methods: A tracer comprising a methylated cyanine-5 (Cy5) fluorescent dye and a mercaptoacetyltriserine chelate (hHEPATO-Cy5) was synthesized and characterized. Cellular uptake and excretion were evaluated in hepatocyte cultures (2-dimensional culture and in vitro lesion model), using a fluorescent bile salt, MitoTracker dye, and methylated Cy5 as a control. After radiolabeling, the pharmacokinetics of 99mTc-hHEPATO-Cy5 were assessed in mice over 24 h (percentage injected dose and percentage injected dose per gram of tissue, SPECT/CT imaging and fluorescence imaging). The ability to provide real-time fluorescence guidance during robot-assisted hepatobiliary surgery was evaluated in a porcine model using ICG as a reference. Results: The unique molecular signature of hHEPATO-Cy5 promotes hepatobiliary excretion. In vitro studies on hepatocytes showed that where methylated Cy5 remained internalized, hHEPATO-Cy5 showed fast clearance (10 min) similar to that of fluorescent bile salt. In vivo use of 99mTc-hHEPATO-Cy5 in mice revealed liver accumulation and rapid biliary clearance. The effectiveness of bile clearance was best exemplified by the 2-orders-of-magnitude reduction in count rate for the gallbladder (P = 0.008) over time. During hepatobiliary surgery in a porcine model, hHEPATO-Cy5 enabled fluorescence-based lesion identification comparable to that of ICG. Conclusion: The bimodal 99mTc-hHEPATO-Cy5 provides an effective means to identify liver lesions. Uniquely, it helps overcome the shortcomings of fluorescence-only approaches by allowing for an extension to in-depth radioguidance.


Subject(s)
Carbocyanines , Surgery, Computer-Assisted , Animals , Carbocyanines/chemistry , Mice , Liver/diagnostic imaging , Liver/metabolism , Liver/surgery , Tissue Distribution , Humans , Radioactive Tracers , Single Photon Emission Computed Tomography Computed Tomography , Swine , Hepatocytes/metabolism
5.
Vaccine ; 42(25): 126093, 2024 Nov 14.
Article in English | MEDLINE | ID: mdl-38944578

ABSTRACT

Suspected allergic reactions after mRNA COVID-19 vaccination withheld multiple individuals from getting fully vaccinated during the pandemic. We vaccinated adults who had experienced possible allergic symptoms after their first intramuscular dose of a COVID-19 mRNA vaccine with a 1/5th fractional intradermal test dose of the mRNA-1273 (Moderna) COVID-19 vaccine. No anaphylactic reactions were observed after intradermal vaccination (n = 56). Serum anti-S1 IgG concentrations were measured using a bead-based multiplex assay four weeks after vaccinations. Antibody concentrations were compared with a previously collected nationwide cohort that had received two intramuscular doses of mRNA-1273. Antibody responses in all subjects tested (n = 47) were comparable to standard of care intramuscular dosing. Fractional intradermal dosing of mRNA COVID-19 vaccines may provide a pragmatic solution that is safe, time efficient compared to skin prick testing, dose sparing and immunogenic in individuals with suspected vaccine allergy.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccination , Humans , Female , Male , Injections, Intradermal , COVID-19/prevention & control , COVID-19/immunology , Adult , Middle Aged , 2019-nCoV Vaccine mRNA-1273/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Antibodies, Viral/blood , Vaccination/methods , Vaccination/adverse effects , SARS-CoV-2/immunology , Immunoglobulin G/blood , Aged , Injections, Intramuscular , Drug Hypersensitivity/immunology , Drug Hypersensitivity/prevention & control , Young Adult
6.
Res Pract Thromb Haemost ; 8(3): 102419, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38779329

ABSTRACT

Background: Fractional-dosed intradermal (i.d.) vaccination produces antibody concentrations above the proposed proxy for protection against severe disease as compared with intramuscular (i.m.) vaccination and may be associated with a decreased prothrombotic effect. Objectives: To assess changes in coagulation following standard dosed i.m. or fractional-dosed i.d. (one-fifth of i.m.) mRNA-1273 SARS-CoV-2 vaccine and to determine the association between the inflammatory response and coagulation. Methods: This study was embedded in a randomized controlled trial assessing the immunogenicity of an i.d. fractional-dosed mRNA-1273 vaccine. Healthy participants, aged 18 to 30 years, were randomized (2:1) to receive either 2 doses of i.d. or i.m. vaccine. Blood was drawn prior to first and second vaccination doses and 1 and 2 weeks after the second dose. The outcomes were changes in coagulation parameters (primary endpoint peak height of the thrombin generation curve) and inflammation (high-sensitivity C-reactive protein [hs-CRP]). Results: One hundred twenty-three participants were included (81 i.d.; 42 i.m.). Peak height increased after vaccination (i.m., 28.8 nmol; 95% CI, 6.3-63.8; i.d., 17.3 nmol; 95% CI, 12.5-47.2) and recovered back to baseline within 2 weeks. I.m. vaccination showed a higher inflammatory response compared with i.d. vaccination (extra increase hs-CRP, 0.92 mg/L; 95% CI, 0.2-1.7). Change in endogenous thrombin potential was associated with change in hs-CRP (beta, 28.0; 95% CI, 7.6-48.3). Conclusion: A transient increase in coagulability after mRNA-1273 SARS-CoV-2 vaccination occurred, which was associated with the inflammatory response. While i.d. administration showed antibody concentrations above the proposed proxy for protection against severe disease, it was associated with less systemic inflammation. Hence, i.d. vaccination may be safer.

7.
Malar J ; 23(1): 111, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641838

ABSTRACT

BACKGROUND: Sporozoites (SPZ), the infective form of Plasmodium falciparum malaria, can be inoculated into the human host skin by Anopheline mosquitoes. These SPZ migrate at approximately 1 µm/s to find a blood vessel and travel to the liver where they infect hepatocytes and multiply. In the skin they are still low in number (50-100 SPZ) and vulnerable to immune attack by antibodies and skin macrophages. This is why whole SPZ and SPZ proteins are used as the basis for most malaria vaccines currently deployed and undergoing late clinical testing. Mosquitoes typically inoculate SPZ into a human host between 14 and 25 days after their previous infective blood meal. However, it is unknown whether residing time within the mosquito affects SPZ condition, infectivity or immunogenicity. This study aimed to unravel how the age of P. falciparum SPZ in salivary glands (14, 17, or 20 days post blood meal) affects their infectivity and the ensuing immune responses. METHODS: SPZ numbers, viability by live/dead staining, motility using dedicated sporozoite motility orienting and organizing tool software (SMOOT), and infectivity of HC-04.j7 liver cells at 14, 17 and 20 days after mosquito feeding have been investigated. In vitro co-culture assays with SPZ stimulated monocyte-derived macrophages (MoMɸ) and CD8+ T-cells, analysed by flow cytometry, were used to investigate immune responses. RESULTS: SPZ age did not result in different SPZ numbers or viability. However, a markedly different motility pattern, whereby motility decreased from 89% at day 14 to 80% at day 17 and 71% at day 20 was observed (p ≤ 0.0001). Similarly, infectivity of day 20 SPZ dropped to ~ 50% compared with day 14 SPZ (p = 0.004). MoMɸ were better able to take up day 14 SPZ than day 20 SPZ (from 7.6% to 4.1%, p = 0.03) and displayed an increased expression of pro-inflammatory CD80, IL-6 (p = 0.005), regulatory markers PDL1 (p = 0.02), IL-10 (p = 0.009) and cytokines upon phagocytosis of younger SPZ. Interestingly, co-culture of these cells with CD8+ T-cells revealed a decreased expression of activation marker CD137 and cytokine IFNγ compared to their day 20 counterparts. These findings suggest that older (day 17-20) P. falciparum SPZ are less infectious and have decreased immune regulatory potential. CONCLUSION: Overall, this data is a first step in enhancing the understanding of how mosquito residing time affects P. falciparum SPZ and could impact the understanding of the P. falciparum infectious reservoir and the potency of whole SPZ vaccines.


Subject(s)
Culicidae , Malaria Vaccines , Malaria, Falciparum , Animals , Humans , Sporozoites , CD8-Positive T-Lymphocytes , Aging , Plasmodium falciparum
8.
Viruses ; 16(4)2024 03 31.
Article in English | MEDLINE | ID: mdl-38675889

ABSTRACT

Remdesivir (RDV) is a broad-spectrum nucleotide analog prodrug approved for the treatment of COVID-19 in hospitalized and non-hospitalized patients with clinical benefit demonstrated in multiple Phase 3 trials. Here we present SARS-CoV-2 resistance analyses from the Phase 3 SIMPLE clinical studies evaluating RDV in hospitalized participants with severe or moderate COVID-19 disease. The severe and moderate studies enrolled participants with radiologic evidence of pneumonia and a room-air oxygen saturation of ≤94% or >94%, respectively. Virology sample collection was optional in the study protocols. Sequencing and related viral load data were obtained retrospectively from participants at a subset of study sites with local sequencing capabilities (10 of 183 sites) at timepoints with detectable viral load. Among participants with both baseline and post-baseline sequencing data treated with RDV, emergent Nsp12 substitutions were observed in 4 of 19 (21%) participants in the severe study and none of the 2 participants in the moderate study. The following 5 substitutions emerged: T76I, A526V, A554V, E665K, and C697F. The substitutions T76I, A526V, A554V, and C697F had an EC50 fold change of ≤1.5 relative to the wildtype reference using a SARS-CoV-2 subgenomic replicon system, indicating no significant change in the susceptibility to RDV. The phenotyping of E665K could not be determined due to a lack of replication. These data reveal no evidence of relevant resistance emergence and further confirm the established efficacy profile of RDV with a high resistance barrier in COVID-19 patients.


Subject(s)
Adenosine Monophosphate , Adenosine Monophosphate/analogs & derivatives , Alanine , Alanine/analogs & derivatives , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Drug Resistance, Viral , SARS-CoV-2 , Viral Load , Humans , Alanine/therapeutic use , Alanine/pharmacology , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Viral Load/drug effects , COVID-19/virology , Male , Female , Retrospective Studies , Middle Aged , Severity of Illness Index
9.
Clin Microbiol Infect ; 30(7): 930-936, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552793

ABSTRACT

OBJECTIVES: The aim of this study was to assess the safety and immunogenicity of a dose-sparing fractional intradermal (ID) booster strategy with the mRNA-1273 COVID-19 vaccine. METHODS: COVID-19 naive adults aged 18-30 years were recruited from a previous study on primary vaccination regimens that compared 20 µg ID vaccinations with 100 µg intramuscular (IM) vaccinations with mRNA-1273 as the primary vaccination series. Participants previously immunized with ID regimens were randomly assigned (1:1) to receive a fractional ID booster dose (20 µg) or the standard-of-care intramuscular (IM) booster dose (50 µg) of the mRNA-1273 vaccine, 6 months after completing their primary series (ID-ID and ID-IM group, respectively). Participants that had received a full dose IM regimen as the primary series, received the IM standard-of-care booster dose (IM-IM group). In addition, COVID-19 naive individuals aged 18-40 years who had received an IM mRNA vaccine as the primary series were recruited from the general population to receive a fractional ID booster dose (IM-ID group). Immunogenicity was assessed using IgG anti-spike antibody responses and neutralizing capacity against SARS-CoV-2. Cellular immune responses were measured in a sub-group. Safety and tolerability were monitored. RESULTS: In January 2022, 129 participants were included in the study. Fractional ID boosting was safe and well tolerated, with fewer systemic adverse events compared with IM boosting. At day 28 post-booster, anti-spike S1 IgG geometric mean concentrations were 9106 (95% CI, 7150-11 597) binding antibody units (BAU)/mL in the IM-IM group and 4357 (3003-6322) BAU/mL; 6629 (4913-8946) BAU/mL; and 5264 (4032-6873) BAU/mL in the ID-IM, ID-ID, and IM-ID groups, respectively. DISCUSSION: Intradermal boosting provides robust immune responses and is a viable dose-sparing strategy for mRNA COVID-19 vaccines. The favourable side-effect profile supports its potential to reduce vaccine hesitancy. Fractional dosing strategies should be considered early in the clinical development of future mRNA vaccines to enhance vaccine availability and pandemic preparedness.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , Adult , Immunization, Secondary/methods , Injections, Intradermal , Male , Female , COVID-19/prevention & control , COVID-19/immunology , Young Adult , Antibodies, Viral/blood , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Antibodies, Neutralizing/blood , Adolescent , Injections, Intramuscular , Vaccination/methods
10.
Biologicals ; 85: 101746, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309984

ABSTRACT

Within the Innovative Health Initiative (IHI) Inno4Vac CHIMICHURRI project, a regulatory workshop was organised on the development and manufacture of challenge agent strains for Controlled Human Infection Model (CHIM) studies. Developers are often uncertain about which GMP requirements or regulatory guidelines apply but should be guided by the 2022 technical white paper "Considerations on the Principles of Development and Manufacturing Qualities of Challenge Agents for Use in Human Infection Models" (published by hVIVO, Wellcome Trust, HIC-Vac consortium members). Where those recommendations cannot be met, regulators advise following the "Principles of GMP" until definitive guidelines are available. Sourcing wild-type virus isolates is a significant challenge for developers. Still, it is preferred over reverse genetics challenge strains for several reasons, including implications and regulations around genetically modified organisms (GMOs). Official informed consent guidelines for collecting isolates are needed, and the characterisation of these isolates still presents risks and uncertainty. Workshop topics included ethics, liability, standardised clinical endpoints, selection criteria, sharing of challenge agents, and addressing population heterogeneity concerning vaccine response and clinical course. The organisers are confident that the workshop discussions will contribute to advancing ethical, safe, and high-quality CHIM studies of influenza, RSV and C. difficile, including adequate regulatory frameworks.


Subject(s)
Clostridioides difficile , Influenza Vaccines , Influenza, Human , Viruses , Humans , Influenza, Human/prevention & control , Viruses/genetics
11.
NPJ Vaccines ; 9(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167735

ABSTRACT

Fractional dosing can be a cost-effective vaccination strategy to accelerate individual and herd immunity in a pandemic. We assessed the immunogenicity and safety of primary intradermal (ID) vaccination, with a 1/5th dose compared with the standard intramuscular (IM) dose of mRNA-1273 in SARS-CoV-2 naïve persons. We conducted an open-label, non-inferiority, randomized controlled trial in the Netherlands between June and December 2021. One hundred and fifty healthy and SARS-CoV-2 naïve participants, aged 18-30 years, were randomized (1:1:1) to receive either two doses of 20 µg mRNA-1273 ID with a standard needle (SN) or the Bella-mu® needle (BM), or two doses of 100 µg IM, 28 days apart. The primary outcome was non-inferiority in seroconversion rates at day 43 (D43), defined as a neutralizing antibody concentration threshold of 465 IU/mL, the lowest response in the IM group. The non-inferiority margin was set at -15%. Neutralizing antibody concentrations at D43 were 1789 (95% CI: 1488-2150) in the IM and 1263 (951-1676) and 1295 (1020-1645) in the ID-SN and ID-BM groups, respectively. The absolute difference in seroconversion proportion between fractional and standard-dose groups was -13.95% (-24.31 to -3.60) for the ID-SN and -13.04% (-22.78 to -3.31) for the ID-BM group and exceeded the predefined non-inferiority margin. Although ID vaccination with 1/5th dose of mRNA-1273 did not meet the predefined non-inferior criteria, the neutralizing antibody concentrations in these groups are far above the proposed proxy for protection against severe disease (100 IU/mL), justifying this strategy in times of vaccine scarcity to accelerate mass protection against severe disease.

12.
Lancet Microbe ; 4(12): e1024-e1034, 2023 12.
Article in English | MEDLINE | ID: mdl-38042152

ABSTRACT

BACKGROUND: Vaccine development against hookworm is hampered by the absence of the development of protective immunity in populations repeatedly exposed to hookworm, limiting identification of mechanisms of protective immunity and new vaccine targets. Immunisation with attenuated larvae has proven effective in dogs and partial immunity has been achieved using an irradiated larvae model in healthy volunteers. We aimed to investigate the protective efficacy of immunisation with short-term larval infection against hookworm challenge. METHODS: We did a single-centre, placebo-controlled, randomised, controlled, phase 1 trial at Leiden University Medical Center (Leiden, Netherlands). Healthy volunteers (aged 18-45 years) were recruited using advertisements on social media and in publicly accessible areas. Volunteers were randomly assigned (2:1) to receive three short-term infections with 50 infectious Necator americanus third-stage filariform larvae (50L3) or placebo. Infection was abrogated with a 3-day course of albendazole 400 mg, 2 weeks after each exposure. Subsequently all volunteers were challenged with two doses of 50L3 at a 2-week interval. The primary endpoint was egg load (geometric mean per g faeces) measured weekly between weeks 12 and 16 after first challenge, assessed in the per-protocol population, which included all randomly assigned volunteers with available data on egg counts at week 12-16 after challenge. This study is registered with ClinicalTrials.gov, NCT03702530. FINDINGS: Between Nov 8 and Dec 14, 2018, 26 volunteers were screened, of whom 23 enrolled in the trial. The first immunisation was conducted on Dec 18, 2018. 23 volunteers were randomly assigned (15 to the intervention group and eight to the placebo group). Egg load after challenge was lower in the intervention group than the placebo group (geometric mean 571 eggs per g [range 372-992] vs 873 eggs per g [268-1484]); however, this difference was not statistically significant (p=0·10). Five volunteers in the intervention group developed a severe skin rash, which was associated with 40% reduction in egg counts after challenge (geometric mean 742 eggs per g [range 268-1484] vs 441 eggs per g [range 380-520] after challenge; p=0·0025) and associated with higher peak IgG1 titres. INTERPRETATION: To our knowledge, this is the first study to describe a protective effect of short-term exposure to hookworm larvae and show an association with skin response, eosinophilic response, and IgG1. These findings could inform future hookworm vaccine development. FUNDING: Dioraphte Foundation.


Subject(s)
Hookworm Infections , Necator americanus , Humans , Animals , Dogs , Healthy Volunteers , Netherlands , Hookworm Infections/drug therapy , Hookworm Infections/prevention & control , Immunoglobulin G , Larva
13.
EBioMedicine ; 97: 104832, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37837930

ABSTRACT

BACKGROUND: A controlled human infection model for schistosomiasis (CHI-S) can speed up vaccine development and provides insight into early immune responses following schistosome exposure. Recently, we established CHI-S model using single-sex male-only Schistosoma mansoni (Sm) cercariae in Schistosoma-naïve individuals. Given important differences in antigenic profile and human immune responses to schistosomes of different sex, we pioneered a single-sex female-only CHI-S model for future use in vaccine development. METHODS: We exposed 13 healthy, Schistosoma-naïve adult participants to 10 (n = 3) or 20 (n = 10) female cercariae and followed for 20 weeks, receiving treatment with praziquantel (PZQ) 60 mg/kg at week 8 and 12 after exposure. FINDINGS: The majority (11/13) participants reported rash and/or itch at the site of exposure, 5/13 had transient symptoms of acute schistosomiasis. Exposure to 20 cercariae led to detectable infection, defined as serum circulating anodic antigen levels >1.0 pg/mL, in 6/10 participants. Despite two rounds of PZQ treatment, 4/13 participants showed signs of persistent infection. Additional one- or three-day PZQ treatment (1 × 60 mg/kg and 3 × 60 mg/kg) or artemether did not result in cure, but over time three participants self-cured. Antibody, cellular, and cytokine responses peaked at week 4 post infection, with a mixed Th1, Th2, and regulatory profile. Cellular responses were (most) discriminative for symptoms. INTERPRETATION: Female-only infections exhibit similar clinical and immunological profiles as male-only infections but are more resistant to PZQ treatment. This limits future use of this model and may have important implications for disease control programs. FUNDING: European Union's Horizon 2020 (grant no. 81564).


Subject(s)
Anthelmintics , Schistosomiasis mansoni , Adult , Animals , Humans , Male , Female , Schistosomiasis mansoni/drug therapy , Healthy Volunteers , Schistosoma mansoni , Praziquantel/pharmacology , Praziquantel/therapeutic use , Cytokines , Anthelmintics/pharmacology , Anthelmintics/therapeutic use
14.
Front Immunol ; 14: 1204606, 2023.
Article in English | MEDLINE | ID: mdl-37720224

ABSTRACT

Despite promising results in malaria-naïve individuals, whole sporozoite (SPZ) vaccine efficacy in malaria-endemic settings has been suboptimal. Vaccine hypo-responsiveness due to previous malaria exposure has been posited as responsible, indicating the need for SPZ vaccines of increased immunogenicity. To this end, we here demonstrate a proof-of-concept for altering SPZ immunogenicity, where supramolecular chemistry enables chemical augmentation of the parasite surface with a TLR7 agonist-based adjuvant (SPZ-SAS(CL307)). In vitro, SPZ-SAS(CL307) remained well recognized by immune cells and induced a 35-fold increase in the production of pro-inflammatory IL-6 (p < 0.001). More promisingly, immunization of mice with SPZ-SAS(CL307) yielded improved SPZ-specific IFN-γ production in liver-derived NK cells (percentage IFN-γ+ cells 11.1 ± 1.8 vs. 9.4 ± 1.5%, p < 0.05), CD4+ T cells (4.7 ± 4.3 vs. 1.8 ± 0.7%, p < 0.05) and CD8+ T cells (3.6 ± 1.4 vs. 2.5 ± 0.9%, p < 0.05). These findings demonstrate the potential of using chemical augmentation strategies to enhance the immunogenicity of SPZ-based malaria vaccines.


Subject(s)
Malaria Vaccines , Malaria , Animals , Mice , CD8-Positive T-Lymphocytes , Sporozoites , Malaria/prevention & control , Adjuvants, Immunologic
15.
Expert Rev Vaccines ; 22(1): 964-1007, 2023.
Article in English | MEDLINE | ID: mdl-37571809

ABSTRACT

INTRODUCTION: Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED: Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION: First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Pregnancy , Child , Animals , Humans , Female , Sporozoites , Translational Science, Biomedical , Vaccines, Attenuated , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Immunization
16.
Lancet Infect Dis ; 23(12): e533-e546, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37573871

ABSTRACT

The unprecedented speed of delivery of SARS-CoV-2 pandemic vaccines has redefined the limits for all vaccine development. Beyond the aspirational 100-day timeline for tomorrow's hypothetical pandemic vaccines, there is a sense of optimism that development of other high priority vaccines can be accelerated. Early in the COVID-19 pandemic, an intense and polarised academic and public discourse arose concerning the role of human challenge trials for vaccine development. A case was made for human challenge trials as a powerful tool to establish early proof-of-concept of vaccine efficacy in humans, inform vaccine down selection, and address crucial knowledge gaps regarding transmission, pathogenesis, and immune protection. We review the track record of human challenge trials contributing to the development of vaccines for 19 different pathogens and discuss relevant limitations, barriers, and pitfalls. This Review also highlights opportunities for efforts to broaden the scope and boost the effects of human challenge trials, to accelerate all vaccine development.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , Pandemics/prevention & control , Fantasy , COVID-19/prevention & control , COVID-19 Vaccines
17.
Immunother Adv ; 3(1): ltad010, 2023.
Article in English | MEDLINE | ID: mdl-37538934

ABSTRACT

Control of schistosomiasis depends on a single drug, praziquantel, with variable cure rates, high reinfection rates, and risk of drug resistance. A vaccine could transform schistosomiasis control. Preclinical data show that vaccine development is possible, but conventional vaccine efficacy trials require high incidence, long-term follow-up, and large sample size. Controlled human infection studies (CHI) can provide early efficacy data, allowing the selection of optimal candidates for further trials. A Schistosoma CHI has been established in the Netherlands but responses to infection and vaccines differ in target populations in endemic countries. We aim to develop a CHI for Schistosoma mansoni in Uganda to test candidate vaccines in an endemic setting. This is an open-label, dose-escalation trial in two populations: minimal, or intense, prior Schistosoma exposure. In each population, participants will be enrolled in sequential dose-escalating groups. Initially, three volunteers will be exposed to 10 cercariae. If all show infection, seven more will be exposed to the same dose. If not, three volunteers in subsequent groups will be exposed to higher doses (20 or 30 cercariae) following the same algorithm, until all 10 volunteers receiving a particular dose become infected, at which point the study will be stopped for that population. Volunteers will be followed weekly after infection until CAA positivity or to 12 weeks. Once positive, they will be treated with praziquantel and followed for one year. The trial registry number is ISRCTN14033813 and all approvals have been obtained. The trial will be subjected to monitoring, inspection, and/or audits.

18.
Lancet Infect Dis ; 23(10): 1164-1174, 2023 10.
Article in English | MEDLINE | ID: mdl-37414066

ABSTRACT

BACKGROUND: Cabamiquine is a novel antimalarial that inhibits Plasmodium falciparum translation elongation factor 2. We investigated the causal chemoprophylactic activity and dose-exposure-response relationship of single oral doses of cabamiquine following the direct venous inoculation (DVI) of P falciparum sporozoites in malaria-naive, healthy volunteers. METHODS: This was a phase 1b, randomised, double-blind, placebo-controlled, adaptive, dose-finding, single-centre study performed in Leiden, Netherlands. Malaria-naive, healthy adults aged 18-45 years were divided into five cohorts and randomly assigned (3:1) to receive cabamiquine or placebo. Randomisation was done by an independent statistician using codes in a permuted block schedule with a block size of four. Participants, investigators, and study personnel were masked to treatment allocation. A single, oral dose regimen of cabamiquine (200, 100, 80, 60, or 30 mg) or matching placebo was administered either at 2 h (early liver-stage) or 96 h (late liver-stage) after DVI. The primary endpoints based on a per-protocol analysis set were the number of participants who developed parasitaemia within 28 days of DVI, time to parasitaemia, number of participants with documented parasite blood-stage growth, clinical symptoms of malaria, and exposure-efficacy modelling. The impact of cabamiquine on liver stages was evaluated indirectly by the appearance of parasitaemia in the blood. The Clopper-Pearson CI (nominal 95%) was used to express the protection rate. The secondary outcomes were safety and tolerability, assessed in those who had received DVI and were administered one dose of the study intervention. The trial was prospectively registered on ClinicalTrials.gov (NCT04250363). FINDINGS: Between Feb 17, 2020 and April 29, 2021, 39 healthy participants were enrolled (early liver-stage: 30 mg [n=3], 60 mg [n=6], 80 mg [n=6], 100 mg [n=3], 200 mg [n=3], pooled placebo [n=6]; late liver-stage: 60 mg [n=3], 100 mg [n=3], 200 mg [n=3], pooled placebo [n=3]). A dose-dependent causal chemoprophylactic effect was observed, with four (67%) of six participants in the 60 mg, five (83%) of six participants in the 80 mg, and all three participants in the 100 and 200 mg cabamiquine dose groups protected from parasitaemia up to study day 28, whereas all participants in the pooled placebo and 30 mg cabamiquine dose group developed parasitaemia. A single, oral dose of 100 mg cabamiquine or higher provided 100% protection against parasitaemia when administered during early or late liver-stage malaria. The median time to parasitaemia in those with early liver-stage malaria was prolonged to 15, 22, and 24 days for the 30, 60, and 80 mg dose of cabamiquine, respectively, compared with 10 days for the pooled placebo. All participants with positive parasitaemia showed documented blood-stage parasite growth, apart from one participant in the pooled placebo group and one participant in the 30 mg cabamiquine group. Most participants did not exhibit any malaria symptoms in both the early and late liver-stage groups, and those reported were mild in severity. A positive dose-exposure-efficacy relationship was established across exposure metrics. The median maximum concentration time was 1-6 h, with a secondary peak observed between 6 h and 12 h in all cabamiquine dose groups (early liver-stage). All cabamiquine doses were safe and well tolerated. Overall, 26 (96%) of 27 participants in the early liver-stage group and ten (83·3%) of 12 participants in the late liver-stage group reported at least one treatment-emergent adverse event (TEAE) with cabamiquine or placebo. Most TEAEs were of mild severity, transient, and resolved without sequelae. The most frequently reported cabamiquine-related TEAE was headache. No dose-related trends were observed in the incidence, severity, or causality of TEAEs. INTERPRETATION: The results from this study show that cabamiquine has a dose-dependent causal chemoprophylactic activity. Together with previously demonstrated activity against the blood stages combined with a half-life of more than 150 h, these results indicate that cabamiquine could be developed as a single-dose monthly regimen for malaria prevention. FUNDING: The healthcare business of Merck KGaA, Darmstadt, Germany.


Subject(s)
Antimalarials , Malaria, Falciparum , Adult , Humans , Plasmodium falciparum , Netherlands , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Healthy Volunteers , Double-Blind Method
19.
ACS Infect Dis ; 9(5): 1046-1055, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37083395

ABSTRACT

In September 2022, the Drug Discovery Unit at the University of Dundee, UK, organised an international meeting at the Wellcome Collection in London to explore the current clinical situation and challenges associated with treating schistosomiasis. The aim of this meeting was to discuss the need for new treatments in view of the clinical situation and to ascertain what the key requirements would be for any potential new anti-schistosomals. This information will be essential to inform ongoing drug discovery efforts for schistosomiasis. We also discussed the potential drug discovery pathway and associated criteria for progressing compounds to the clinic. To date, praziquantel (PZQ) is the only drug available to treat all species causing schistosomiasis, but it is often unable to completely clear parasites from an infected patient, partially due to its inactivity against juvenile worms. PZQ-mediated mass drug administration campaigns conducted in endemic areas (e.g., sub-Saharan Africa, where schistosomiasis is primarily prevalent) have contributed to reducing the burden of disease but will not eliminate the disease as a public health problem. The potential for Schistosoma to develop resistance towards PZQ, as the sole treatment available, could become a concern. Consequently, new anthelmintic medications are urgently needed, and this Perspective aims to capture some of the learnings from our discussions on the key criteria for new treatments.


Subject(s)
Anthelmintics , Schistosomiasis , Animals , London , Schistosomiasis/drug therapy , Praziquantel/pharmacology , Praziquantel/therapeutic use , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Schistosoma
20.
Trends Parasitol ; 39(3): 212-226, 2023 03.
Article in English | MEDLINE | ID: mdl-36641293

ABSTRACT

Imaging of parasites is central to diagnosis of many parasitic diseases and has thus far played an important role in the development of antiparasitic strategies. The development of novel imaging technologies has revolutionized medicine in fields other than parasitology and has also opened up new avenues for the visualization of parasites. Here we review the role imaging technology has played so far in parasitology and how it may spur further advancement. We point out possibilities to improve current microscopy-based diagnostic methods and how to extend them with radiological imaging modalities. We also highlight in vivo tracking of parasites as a readout for efficacy of new antiparasitic strategies and as a source of fundamental insights for rational design.


Subject(s)
Parasites , Parasitic Diseases , Animals , Humans , Parasitic Diseases/diagnostic imaging , Parasitic Diseases/parasitology , Antiparasitic Agents , Diagnostic Imaging , Parasitology/methods
SELECTION OF CITATIONS
SEARCH DETAIL