Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-466067

To date, COVID-19 is still a severe threat to public health, hence specific effective therapeutic drugs development against SARS-CoV-2 is urgent needed. 3CLpro and PLpro and RdRp are the enzymes required for the SARS-CoV-2 RNA synthesis. Therefore, binding to the enzyme may interfere the enzyme function. Before, we found that sulfated polysaccharide binding to 3CLpro might block the virus replication. Hence, we hypothesize that negative charged pectin glycan may also impede the virus replication. Here we show that 922 crude polysaccharide from Syzygium aromaticum may near completely block SARS-CoV-2 replication. The inhibition rate was 99.9% (EC50 : 0.90 M). Interestingly, 922 can associates with 3CLpro, PLpro and RdRp. We further show that the homogeneous glycan 922211 from 922 may specifically attenuate 3CL protease activity. The IC50s of 922 and 922211 against 3CLpro are 4.73 {+/-} 1.05 {micro}M and 0.18 {+/-} 0.01 {micro}M, respectively. Monosaccharide composition analysis reveals that 922211 with molecular weight of 78.7 kDa is composed of rhamnose, galacturonic acid, galactose and arabinose in the molar ratio of 8.21 : 37.81 : 3.58 : 4.49. The structure characterization demonstrated that 922211 is a homogalacturonan linked to RG-I pectin polysaccharide. The linear homogalacturonan part in the backbone may be partly methyl esterified while RG-I type part bearing 1, 4-linked -GalpA, 1, 4-linked -GalpAOMe and 1, 2, 4-linked -Rhap. There are four branches attached to C-1 or C4 position of Rhamnose glycosyl residues on the backbone. The branches are composed of 1, 3-linked {beta}-Galp, terminal (T)-linked {beta}-Galp, 1, 5-linked -Araf, T-linked -Araf, 4-linked -GalpA and/or 4-linked {beta}-GalpA. The above results suggest that 922 and 922211 might be a potential novel leading compound for anti-SARS-CoV-2 new drug development.

2.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-449680

SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. Here we showed that SARS-CoV-2-triggeed MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation alterred various signaling pathways in alveolar epithelial cells, particularly, led to the production of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=135 SRC="FIGDIR/small/449680v1_ufig1.gif" ALT="Figure 1"> View larger version (29K): org.highwire.dtl.DTLVardef@899996org.highwire.dtl.DTLVardef@1c26c0eorg.highwire.dtl.DTLVardef@1442cdcorg.highwire.dtl.DTLVardef@dd4204_HPS_FORMAT_FIGEXP M_FIG C_FIG In BriefSARS-CoV-2 triggers an immediate mast cell (MC) degranulation, which initiates the alveolar epithelial inflammation and disrupts the tight junction. MC stabilizers that block degranulation reduce virus-induced lung inflammation and injury. HighlightsO_LIThe binding of RBD of Spike protein of SARS-CoV-2-to ACE2 receptor protein triggers an immediate MC degranulation C_LIO_LIMC degranulation induces transcriptomic changes include an upregulated inflammatory signaling and a downregulated cell-junction signaling C_LIO_LIMC degranulation leads to alveolar epithelial inflammation and disruption of tight junctions C_LIO_LIMC stabilizer that inhibits degranulation reduces SARS-CoV-2-induced lung inflammation and injury in vivo C_LI

3.
Protein & Cell ; (12): 261-278, 2021.
Article En | WPRIM | ID: wpr-880901

TANK-binding kinase 1 (TBK1), a core kinase of antiviral pathways, activates the production of interferons (IFNs). It has been reported that deacetylation activates TBK1; however, the precise mechanism still remains to be uncovered. We show here that during the early stage of viral infection, the acetylation of TBK1 was increased, and the acetylation of TBK1 at Lys241 enhanced the recruitment of IRF3 to TBK1. HDAC3 directly deacetylated TBK1 at Lys241 and Lys692, which resulted in the activation of TBK1. Deacetylation at Lys241 and Lys692 was critical for the kinase activity and dimerization of TBK1 respectively. Using knockout cell lines and transgenic mice, we confirmed that a HDAC3 null mutant exhibited enhanced susceptibility to viral challenge via impaired production of type I IFNs. Furthermore, activated TBK1 phosphorylated HDAC3, which promoted the deacetylation activity of HDAC3 and formed a feedback loop. In this study, we illustrated the roles the acetylated and deacetylated forms of TBK1 play in antiviral innate responses and clarified the post-translational modulations involved in the interaction between TBK1 and HDAC3.

4.
Chinese Medical Journal ; (24): 1967-1976, 2021.
Article En | WPRIM | ID: wpr-887626

BACKGROUND@#Innovative coronavirus disease 2019 (COVID-19) vaccines, with elevated global manufacturing capacity, enhanced safety and efficacy, simplified dosing regimens, and distribution that is less cold chain-dependent, are still global imperatives for tackling the ongoing pandemic. A previous phase I trial indicated that the recombinant COVID-19 vaccine (V-01), which contains a fusion protein (IFN-PADRE-RBD-Fc dimer) as its antigen, is safe and well tolerated, capable of inducing rapid and robust immune responses, and warranted further testing in additional clinical trials. Herein, we aimed to assess the immunogenicity and safety of V-01, providing rationales of appropriate dose regimen for further efficacy study.@*METHODS@#A randomized, double-blind, placebo-controlled phase II clinical trial was initiated at the Gaozhou Municipal Centre for Disease Control and Prevention (Guangdong, China) in March 2021. Both younger (n = 440; 18-59 years of age) and older (n = 440; ≥60 years of age) adult participants in this trial were sequentially recruited into two distinct groups: two-dose regimen group in which participants were randomized either to follow a 10 or 25 μg of V-01 or placebo given intramuscularly 21 days apart (allocation ratio, 3:3:1, n = 120, 120, 40 for each regimen, respectively), or one-dose regimen groups in which participants were randomized either to receive a single injection of 50 μg of V-01 or placebo (allocation ratio, 3:1, n = 120, 40, respectively). The primary immunogenicity endpoints were the geometric mean titers of neutralizing antibodies against live severe acute respiratory syndrome coronavirus 2, and specific binding antibodies to the receptor binding domain (RBD). The primary safety endpoint evaluation was the frequencies and percentages of overall adverse events (AEs) within 30 days after full immunization.@*RESULTS@#V-01 provoked substantial immune responses in the two-dose group, achieving encouragingly high titers of neutralizing antibody and anti-RBD immunoglobulin, which peaked at day 35 (161.9 [95% confidence interval [CI]: 133.3-196.7] and 149.3 [95%CI: 123.9-179.9] in 10 and 25 μg V-01 group of younger adults, respectively; 111.6 [95%CI: 89.6-139.1] and 111.1 [95%CI: 89.2-138.4] in 10 and 25 μg V-01 group of older adults, respectively), and remained high at day 49 after a day-21 second dose; these levels significantly exceed those in convalescent serum from symptomatic COVID-19 patients (53.6, 95%CI: 31.3-91.7). Our preliminary data show that V-01 is safe and well tolerated, with reactogenicity predominantly being absent or mild in severity and only one vaccine-related grade 3 or worse AE being observed within 30 days. The older adult participants demonstrated a more favorable safety profile compared with those in the younger adult group: with AEs percentages of 19.2%, 25.8%, 17.5% in older adults vs. 34.2%, 23.3%, 26.7% in younger adults at the 10, 25 μg V-01 two-dose group, and 50 μg V-01 one-dose group, respectively.@*CONCLUSIONS@#The vaccine candidate V-01 appears to be safe and immunogenic. The preliminary findings support the advancement of the two-dose, 10 μg V-01 regimen to a phase III trial for a large-scale population-based evaluation of safety and efficacy.@*TRIAL REGISTRATION@#http://www.chictr.org.cn/index.aspx (No. ChiCTR2100045107, http://www.chictr.org.cn/showproj.aspx?proj=124702).


Aged , Humans , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Double-Blind Method , Immunization, Passive , Recombinant Fusion Proteins , SARS-CoV-2
...