Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Heliyon ; 10(16): e35790, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39220928

ABSTRACT

The global SARS-CoV-2 monitoring effort has been extensive, resulting in many states and countries establishing wastewater-based epidemiology programs to address the spread of the virus during the pandemic. Challenges for programs include concurrently optimizing methods, training new laboratories, and implementing successful surveillance programs that can rapidly translate results for public health, and policy making. Surveillance in Michigan early in the pandemic in 2020 highlights the importance of quality-controlled data and explores correlations with wastewater and clinical case data aggregated at the state level. The lessons learned and potential measures to improve public utilization of results are discussed. The Michigan Network for Environmental Health and Technology (MiNET) established a network of laboratories that partnered with local health departments, universities, wastewater treatment plants (WWTPs) and other stakeholders to monitor SARS-CoV-2 in wastewater at 214 sites in Michigan. MiNET consisted of nineteen laboratories, twenty-nine local health departments, 6 Native American tribes, and 60 WWTPs monitoring sites representing 45 % of Michigan's population from April 6 and December 29, 2020. Three result datasets were created based on quality control criteria. Wastewater results that met all quality assurance criteria (Dataset Mp) produced strongest correlations with reported clinical cases at 16 days lag (rho = 0.866, p < 0.05). The project demonstrated the ability to successfully track SARS-CoV-2 on a large, state-wide scale, particularly data that met the outlined quality criteria and provided an early warning of increasing COVID-19 cases. MiNET is currently poised to leverage its competency to complement public health surveillance networks through environmental monitoring for new and emerging pathogens of concern and provides a valuable resource to state and federal agencies to support future responses.

2.
Water Res ; 266: 122281, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39205336

ABSTRACT

Drinking water distribution systems are increasingly vulnerable to sewage intrusion due to aging water infrastructure and intensifying water stress. While the health risks associated with sewage intrusion have been extensively studied, little is known about the impacts of intruded bacteria and dissolved organic matter (DOM) on microbiology in drinking water. In this dynamic study, we demonstrate that the intrusion of 1 % sewage into tap water resulted in immediate contamination, including an 8-fold increase in biomass (TCC), a 48.9 % increase in bacterial species (ASVs), a 12.5 % increase in organic carbon content (DOC), and a 13.5 % increase in unique DOM molecular formulae. Over time, sewage intrusion altered tap water microbiology by accelerating bacterial growth rates (5-fold faster), selectively promoting ASVs in community succession, and producing 998 more unique DOM formulae. More significantly, statistical analysis revealed that the intrusion of 1 % sewage shifted the driving force of bacterial and DOM composition covariance from a DOM-dependent process in tap water to a bacterial-governed process post-intrusion. Our results clearly demonstrate the disruptive effects of sewage intrusion into tap water, emphasizing the urgent need to consider the long-lasting impacts of sewage intrusion in drinking water distribution systems, in addition to its immediate health risks.

3.
Food Environ Virol ; 16(3): 422-431, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38951381

ABSTRACT

Pathogenic viruses in environmental water are usually present in levels too low for direct detection and thus, a concentration step is often required to increase the analytical sensitivity. The objective of this study was to evaluate an automated filtration device, the Innovaprep Concentrating Pipette Select (CP Select) for the rapid concentration of viruses in saline water samples, while considering duration of process and ease of use. Four bacteriophages (MS2, P22, Phi6, and PhiX174) and three animal viruses (adenovirus, coronavirus OC43, and canine distemper virus) were seeded in artificial seawater, aquarium water, and bay water samples, and processed using the CP Select. The recovery efficiencies of viruses were determined either using a plaque assay or droplet digital PCR (ddPCR). Using plaque assays, the average recovery efficiencies for bacteriophages ranged from 4.84 ± 3.8% to 82.73 ± 27.3%, with highest recovery for P22 phage. The average recovery efficiencies for the CP Select were 39.31 ± 26.6% for adenovirus, 19.04 ± 11.6% for coronavirus OC43, and 19.84 ± 13.6% for canine distemper virus, as determined by ddPCR. Overall, viral genome composition, not the size of the virus, affected the recovery efficiencies for the CP Select. The small sample volume size used for the ultrafilter pipette of the system hinders the use of this method as a primary concentration step for viruses in marine waters. However, the ease of use and rapid processing time of the CP Select are especially beneficial when rapid detection of viruses in highly contaminated water, such as wastewater or sewage-polluted surface water, is needed.


Subject(s)
Saline Waters , Ultrafiltration , Ultrafiltration/methods , Ultrafiltration/instrumentation , Viruses/isolation & purification , Viruses/genetics , Bacteriophages/isolation & purification , Bacteriophages/genetics , Bacteriophages/classification , Animals
4.
Risk Anal ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772724

ABSTRACT

The coronavirus disease 2019 pandemic highlighted the need for more rapid and routine application of modeling approaches such as quantitative microbial risk assessment (QMRA) for protecting public health. QMRA is a transdisciplinary science dedicated to understanding, predicting, and mitigating infectious disease risks. To better equip QMRA researchers to inform policy and public health management, an Advances in Research for QMRA workshop was held to synthesize a path forward for QMRA research. We summarize insights from 41 QMRA researchers and experts to clarify the role of QMRA in risk analysis by (1) identifying key research needs, (2) highlighting emerging applications of QMRA; and (3) describing data needs and key scientific efforts to improve the science of QMRA. Key identified research priorities included using molecular tools in QMRA, advancing dose-response methodology, addressing needed exposure assessments, harmonizing environmental monitoring for QMRA, unifying a divide between disease transmission and QMRA models, calibrating and/or validating QMRA models, modeling co-exposures and mixtures, and standardizing practices for incorporating variability and uncertainty throughout the source-to-outcome continuum. Cross-cutting needs identified were to: develop a community of research and practice, integrate QMRA with other scientific approaches, increase QMRA translation and impacts, build communication strategies, and encourage sustainable funding mechanisms. Ultimately, a vision for advancing the science of QMRA is outlined for informing national to global health assessments, controls, and policies.

5.
Water Res ; 254: 121338, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38430753

ABSTRACT

Quantitative polymerase chain reaction (PCR) and genome sequencing are important methods for wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The reverse transcription-droplet digital PCR (RT-ddPCR) is a highly sensitive method for quantifying SARS-CoV-2 RNA in wastewater samples to track the trends of viral activity levels but cannot identify new variants. It also takes time to develop new PCR-based assays targeting variants of interest. Whole genome sequencing (WGS) can be used to monitor known and new SARS-CoV-2 variants, but it is generally not quantitative. Several short-read sequencing techniques can be expensive and might experience delayed turnaround times when outsourced due to inadequate in-house resources. Recently, a portable nanopore sequencing system offers an affordable and real-time method for sequencing SARS-CoV-2 variants in wastewater. This technology has the potential to enable swift response to disease outbreaks without relying on clinical sequencing results. In addressing concerns related to rapid turnaround time and accurate variant analysis, both RT-ddPCR and nanopore sequencing methods were employed to monitor the emergence of SARS-CoV-2 variants in wastewater. This surveillance was conducted at 23 sewer maintenance hole sites and five wastewater treatment plants in Michigan from 2020 to 2022. In 2020, the wastewater samples were dominated by the parental variants (20A, 20C and 20 G), followed by 20I (Alpha, B.1.1.7) in early 2021 and the Delta variant of concern (VOC) in late 2021. For the year 2022, Omicron variants dominated. Nanopore sequencing has the potential to validate suspected variant cases that were initially undetermined by RT-ddPCR assays. The concordance rate between nanopore sequencing and RT-ddPCR assays in identifying SARS-CoV-2 variants to the clade-level was 76.9%. Notably, instances of disagreement between the two methods were most prominent in the identification of the parental and Omicron variants. We also showed that sequencing wastewater samples with SARS-CoV-2 N gene concentrations of >104 GC/100 ml as measured by RT-ddPCR improve genome recovery and coverage depth using MinION device. RT-ddPCR was better at detecting key spike protein mutations A67V, del69-70, K417N, L452R, N501Y, N679K, and R408S (p-value <0.05) as compared to nanopore sequencing. It is suggested that RT-ddPCR and nanopore sequencing should be coordinated in wastewater surveillance where RT-ddPCR can be used as a preliminary quantification method and nanopore sequencing as the confirmatory method for the detection of variants or identification of new variants. The RT-ddPCR and nanopore sequencing methods reported here can be adopted as a reliable in-house analysis of SARS-CoV-2 in wastewater for rapid community level surveillance and public health response.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2/genetics , Wastewater , RNA, Viral , Workflow , Wastewater-Based Epidemiological Monitoring , Polymerase Chain Reaction , COVID-19 Testing
6.
Environ Int ; 185: 108538, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422875

ABSTRACT

Although simulated studies have provided valuable knowledge regarding the communities of planktonic bacteria and biofilms, the lack of systematic field studies have hampered the understanding of microbiology in real-world service lines and premise plumbing. In this study, the bacterial communities of water and biofilm were explored, with a special focus on the lifetime development of biofilm communities and their key influencing factors. The 16S rRNA gene sequencing results showed that both the planktonic bacteria and biofilm were dominated by Proteobacteria. Among the 15,084 observed amplicon sequence variants (ASVs), the 33 core ASVs covered 72.8 %, while the 12 shared core ASVs accounted for 62.2 % of the total sequences. Remarkably, it was found that the species richness and diversity of biofilm communities correlated with pipe age. The relative abundance of ASV2 (f_Sphingomonadaceae) was lower for pipe ages 40-50 years (7.9 %) than for pipe ages 10-20 years (59.3 %), while the relative abundance of ASV10 (f_Hyphomonadaceae) was higher for pipe ages 40-50 years (19.5 %) than its presence at pipe ages 20-30 years (1.9 %). The community of the premise plumbing biofilm had significantly higher species richness and diversity than that of the service line, while the steel-plastics composite pipe interior lined with polyethylene (S-PE) harbored significantly more diverse biofilm than the galvanized steel pipes (S-Zn). Interestingly, S-PE was enriched with ASV27 (g_Mycobacterium), while S-Zn pipes were enriched with ASV13 (g_Pseudomonas). Moreover, the network analysis showed that five rare ASVs, not core ASVs, were keystone members in biofilm communities, indicating the importance of rare members in the function and stability of biofilm communities. This manuscript provides novel insights into real-world service lines and premise plumbing microbiology, regarding lifetime dynamics (pipe age 10-50 years), and the influences of pipe types (premise plumbing vs. service line) and pipe materials (S-Zn vs. S-PE).


Subject(s)
Drinking Water , Sanitary Engineering , Water Supply , RNA, Ribosomal, 16S/genetics , Water Microbiology , Bacteria/genetics , Biofilms , Steel , Drinking Water/microbiology
7.
Environ Sci Technol ; 58(1): 3-16, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193155

ABSTRACT

Water reuse is rapidly becoming an integral feature of resilient water systems, where municipal wastewater undergoes advanced treatment, typically involving a sequence of ultrafiltration (UF), reverse osmosis (RO), and an advanced oxidation process (AOP). When RO is used, a concentrated waste stream is produced that is elevated in not only total dissolved solids but also metals, nutrients, and micropollutants that have passed through conventional wastewater treatment. Management of this RO concentrate─dubbed municipal wastewater reuse concentrate (MWRC)─will be critical to address, especially as water reuse practices become more widespread. Building on existing brine management practices, this review explores MWRC management options by identifying infrastructural needs and opportunities for multi-beneficial disposal. To safeguard environmental systems from the potential hazards of MWRC, disposal, monitoring, and regulatory techniques are discussed to promote the safety and affordability of implementing MWRC management. Furthermore, opportunities for resource recovery and valorization are differentiated, while economic techniques to revamp cost-benefit analysis for MWRC management are examined. The goal of this critical review is to create a common foundation for researchers, practitioners, and regulators by providing an interdisciplinary set of tools and frameworks to address the impending challenges and emerging opportunities of MWRC management.


Subject(s)
Ultrafiltration , Wastewater , Epichlorohydrin , Nutrients , Water
9.
PLoS One ; 18(8): e0289343, 2023.
Article in English | MEDLINE | ID: mdl-37535602

ABSTRACT

During the COVID-19 pandemic, wastewater-based surveillance has been shown to be a useful tool for monitoring the spread of disease in communities and the emergence of new viral variants of concern. As the pandemic enters its fourth year and clinical testing has declined, wastewater offers a consistent non-intrusive way to monitor community health in the long term. This study sought to understand how accurately wastewater monitoring represented the actual burden of disease between communities. Two communities varying in size and demographics in Michigan were monitored for SARS-CoV-2 in wastewater between March of 2020 and February of 2022. Additionally, each community was monitored for SARS-CoV-2 variants of concern from December 2020 to February 2022. Wastewater results were compared with zipcode and county level COVID-19 case data to determine which scope of clinical surveillance was most correlated with wastewater loading. Pearson r correlations were highest in the smaller of the two communities (population of 25,000) for N1 GC/person/day with zipcode level case data, and date of the onset of symptoms (r = 0.81). A clear difference was seen with more cases and virus signals in the wastewater of the larger community (population 110,000) when examined based on vaccine status, which reached only 50%. While wastewater levels of SARS-CoV-2 had a lower correlation to cases in the larger community, the information was still seen as valuable in supporting public health actions and further data including vaccination status should be examined in the future.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Wastewater , Wastewater-Based Epidemiological Monitoring , Pandemics , RNA, Viral
10.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37310875

ABSTRACT

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Animals , Humans , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Drug Resistance, Microbial/genetics , Metagenomics/methods
11.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Article in English | MEDLINE | ID: mdl-37286726

ABSTRACT

The impacts of nucleic acid-based methods - such as PCR and sequencing - to detect and analyze indicators, genetic markers or molecular signatures of microbial faecal pollution in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis. Undoubtedly, GFPD has already revolutionized faecal pollution detection (i.e., traditional or alternative general faecal indicator/marker analysis) and microbial source tracking (i.e., host-associated faecal indicator/marker analysis), the current core applications. GFPD is also expanding to many other research areas, including infection and health risk assessment, evaluation of microbial water treatment, and support of wastewater surveillance. In addition, storage of DNA extracts allows for biobanking, which opens up new perspectives. The tools of GFPD can be combined with cultivation-based standardized faecal indicator enumeration, pathogen detection, and various environmental data types, in an integrated data analysis approach. This comprehensive meta-analysis provides the scientific status quo of this field, including trend analyses and literature statistics, outlining identified application areas, and discusses the benefits and challenges of nucleic acid-based analysis in GFPD.


Subject(s)
Nucleic Acids , Water Pollution , Water Pollution/analysis , Water Quality , Biological Specimen Banks , Wastewater , Environmental Monitoring/methods , Wastewater-Based Epidemiological Monitoring , Water Microbiology , Feces
12.
FEMS Microbes ; 4: xtad003, 2023.
Article in English | MEDLINE | ID: mdl-37333436

ABSTRACT

A year since the declaration of the global coronavirus disease 2019 (COVID-19) pandemic, there were over 110 million cases and 2.5 million deaths. Learning from methods to track community spread of other viruses such as poliovirus, environmental virologists and those in the wastewater-based epidemiology (WBE) field quickly adapted their existing methods to detect SARS-CoV-2 RNA in wastewater. Unlike COVID-19 case and mortality data, there was not a global dashboard to track wastewater monitoring of SARS-CoV-2 RNA worldwide. This study provides a 1-year review of the "COVIDPoops19" global dashboard of universities, sites, and countries monitoring SARS-CoV-2 RNA in wastewater. Methods to assemble the dashboard combined standard literature review, Google Form submissions, and daily, social media keyword searches. Over 200 universities, 1400 sites, and 55 countries with 59 dashboards monitored wastewater for SARS-CoV-2 RNA. However, monitoring was primarily in high-income countries (65%) with less access to this valuable tool in low- and middle-income countries (35%). Data were not widely shared publicly or accessible to researchers to further inform public health actions, perform meta-analysis, better coordinate, and determine equitable distribution of monitoring sites. For WBE to be used to its full potential during COVID-19 and beyond, show us the data.

13.
Water Res ; 241: 120149, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37270942

ABSTRACT

Premise plumbing plays an essential role in determining the final quality of drinking water consumed by customers. However, little is known about the influences of plumbing configuration on water quality changes. This study selected parallel premise plumbing in the same building with different configurations, i.e., laboratory and toilet plumbing. Water quality deteriorations induced by premise plumbing under regular and interrupted water supply were investigated. The results showed that most of the water quality parameters did not vary under regular supply, except Zn, which was significantly increased by laboratory plumbing (78.2 to 260.7 µg/l). For the bacterial community, the Chao1 index was significantly increased by both plumbing types to a similar level (52 to 104). Laboratory plumbing significantly changed the bacterial community, but toilet plumbing did not. Remarkably, water supply interruption/restoration led to serious water quality deterioration in both plumbing types but resulted in different changes. Physiochemically, discoloration was observed only in laboratory plumbing, along with sharp increases in Mn and Zn. Microbiologically, the increase in ATP was sharper in toilet plumbing than in laboratory plumbing. Some opportunistic pathogen-containing genera, e.g., Legionella spp. and Pseudomonas spp., were present in both plumbing types but only in disturbed samples. This study highlighted the esthetic, chemical, and microbiological risks associated with premise plumbing, for which system configuration plays an important role. Attention should be given to optimizing premise plumbing design for managing building water quality.


Subject(s)
Sanitary Engineering , Water Quality , Water Microbiology , Water Supply , Pseudomonas
14.
Water Res X ; 18: 100171, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-37250291

ABSTRACT

The safe management of fecal sludge from the 3.4 billion people worldwide that use onsite sanitation systems can greatly reduce the global infectious disease burden. However, there is limited knowledge about the role of design, operational, and environmental factors on pathogen survival in pit latrines, urine diverting desiccation toilets, and other types of onsite toilets. We conducted a systematic literature review and meta-analysis to characterize pathogen reduction rates in fecal sludge, feces, and human excreta with respect to pH, temperature, moisture content, and the use of additives for desiccation, alkalinization, or disinfection. A meta-analysis of 1,382 data points extracted from 243 experiments described in 26 articles revealed significant differences between the decay rates and T99 values of pathogens and indicators from different microbial groups. The overall median T99 values were 4.8 days, 29 days, >341 days, and 429 days for bacteria, viruses, protozoan (oo)cysts, and Ascaris eggs, respectively. As expected, higher pH values, higher temperatures, and the application of lime all significantly predicted greater pathogen reduction rates but the use of lime by itself was more effective for bacteria and viruses than for Ascaris eggs, unless urea was also added. In multiple lab-scale experiments, the application of urea with enough lime or ash to reach a pH of 10 - 12 and a sustained concentration of 2,000 - 6,000 mg/L of non-protonated NH3-N reduced Ascaris eggs more rapidly than without urea. In general, the storage of fecal sludge for 6 months adequately controls hazards from viruses and bacteria, but much longer storage times or alkaline treatment with urea and low moisture or heat is needed to control hazards from protozoa and helminths. More research is needed to demonstrate the efficacy of lime, ash, and urea in the field. More studies of protozoan pathogens are also needed, as very few qualifying experiments were found for this group.

15.
Food Environ Virol ; 15(2): 131-143, 2023 06.
Article in English | MEDLINE | ID: mdl-37133676

ABSTRACT

Wastewater-based epidemiology has been recognized as a tool to monitor the progress of COVID-19 pandemic worldwide. The study presented herein aimed at quantitating the SARS-CoV-2 RNA in the wastewaters, predicting the number of infected individuals in the catchment areas, and correlating it with the clinically reported COVID-19 cases. Wastewater samples (n = 162) from different treatment stages were collected from three wastewater treatment plants (WWTPs) from Mumbai city during the 2nd surge of COVID-19 (April 2021 to June 2021). SARS-CoV-2 causing COVID-19, was detected in 76.2% and 4.8% of raw and secondary treated (n = 63 each) wastewater samples respectively while all tertiary treated samples (n = 36) were negative. The quantity of SARS-CoV-2 RNA determined as gene copies/100 mL varied among all the three WWTPs under study. The gene copy numbers thus obtained were further used to estimate the number of infected individuals within the population served by these WWTPs using two published methods. A positive correlation (p < 0.05) was observed between the estimated number of infected individuals and clinically confirmed COVID-19 cases reported during the sampling period in two WWTPs. Predicted infected individuals calculated in this study were 100 times higher than the reported COVID-19 cases in all the WWTPs assessed. The study findings demonstrated that the present wastewater treatment technologies at the three WWTPs studied were adequate to remove the virus. However, SARS-CoV-2 genome surveillance with emphasis on monitoring its variants should be implemented as a routine practice to prepare for any future surge in infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Prevalence , Wastewater-Based Epidemiological Monitoring , Pandemics , RNA, Viral , Wastewater
16.
Trop Med Infect Dis ; 8(3)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36977164

ABSTRACT

Helicobacter pylori infects approximately 50% of the world's population and is considered the major etiological agent of severe gastric diseases, such as peptic ulcers and gastric carcinoma. Increasing resistance to standard antibiotics has now led to an ever-decreasing efficacy of eradication therapies and the development of novel and improved regimens for treatment is urgently required. Substantial progress has been made over the past few years in the identification of molecular mechanisms which are conducive to resistant phenotypes as well as for efficient strategies to counteract strain resistance and to avoid the use of ineffective antibiotics. These involve molecular testing methods, improved salvage therapies, and the discovery of novel and potent antimicrobial compounds. High rates of prevalence and gastric cancer are currently observed in Asian countries, including Japan, China, Korea, and Taiwan, where concomitantly intensive research efforts were initiated to explore advanced eradication regimens aimed at reducing the risk of gastric cancer. In this review, we present an overview of the known molecular mechanisms of antibiotic resistance and discuss recent intervention strategies for H. pylori diseases, with a view of the research progress in Asian countries.

17.
Health Inf Manag ; 52(3): 151-156, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35695132

ABSTRACT

Background: With increasing implementation of enhanced recovery programs (ERPs) in clinical practice, standardised data collection and reporting have become critical in addressing the heterogeneity of metrics used for reporting outcomes. Opportunities exist to leverage electronic health record (EHR) systems to collect, analyse, and disseminate ERP data. Objectives: (i) To consolidate relevant ERP variables into a singular data universe; (ii) To create an accessible and intuitive query tool for rapid data retrieval. Method: We reviewed nine established individual team databases to identify common variables to create one standard ERP data dictionary. To address data automation, we used a third-party business intelligence tool to map identified variables within the EHR system, consolidating variables into a single ERP universe. To determine efficacy, we compared times for four experienced research coordinators to use manual, five-universe, and ERP Universe processes to retrieve ERP data for 10 randomly selected surgery patients. Results: The total times to process data variables for all 10 patients for the manual, five universe, and ERP Universe processes were 510, 111, and 76 min, respectively. Shifting from the five-universe or manual process to the ERP Universe resulted in decreases in time of 32% and 85%, respectively. Conclusion: The ERP Universe improves time spent collecting, analysing, and reporting ERP elements without increasing operational costs or interrupting workflow. Implications: Manual data abstraction places significant burden on resources. The creation of a singular instrument dedicated to ERP data abstraction greatly increases the efficiency in which clinicians and supporting staff can query adherence to an ERP protocol.


Subject(s)
Data Collection , Humans , Costs and Cost Analysis
18.
Sci Total Environ ; 858(Pt 1): 159748, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36306840

ABSTRACT

Wastewater-based epidemiology (WBE) has gained increasing attention as a complementary tool to conventional surveillance methods with potential for significant resource and labour savings when used for public health monitoring. Using WBE datasets to train machine learning algorithms and develop predictive models may also facilitate early warnings for the spread of outbreaks. The challenges associated with using machine learning for the analysis of WBE datasets and timeseries forecasting of COVID-19 were explored by running Random Forest (RF) algorithms on WBE datasets across 108 sites in five regions: Scotland, Catalonia, Ohio, the Netherlands, and Switzerland. This method uses measurements of SARS-CoV-2 RNA fragment concentration in samples taken at the inlets of wastewater treatment plants, providing insight into the prevalence of infection in upstream wastewater catchment populations. RF's forecasting performance at each site was quantitatively evaluated by determining mean absolute percentage error (MAPE) values, which was used to highlight challenges affecting future implementations of RF for WBE forecasting efforts. Performance was generally poor using WBE datasets from Catalonia, Scotland, and Ohio with 'reasonable' or better forecasts constituting 0 %, 5 %, and 0 % of these regions' forecasts, respectively. RF's performance was much stronger with WBE data from the Netherlands and Switzerland, which provided 55 % and 45 % 'reasonable' or better forecasts respectively. Sampling frequency and training set size were identified as key factors contributing to accuracy, while inclusion of too many unnecessary variables (or e.g., flow data) was identified as a contributing factor to poor performance. The contribution of catchment population on forecast accuracy was more ambiguous. This study determined that the factors governing RF's forecast performance are complicated and interrelated, which presents challenges for further work in this space. A sufficiently accurate further iteration of the tool discussed within this study would provide significant but varying value for public health departments for monitoring future, or ongoing outbreaks, assisting the implementation of on-time health response measures.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Wastewater , COVID-19/epidemiology , Time Factors , RNA, Viral , SARS-CoV-2 , Machine Learning , Forecasting
19.
Water Res ; 225: 119162, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36191524

ABSTRACT

Surface water quality quantitative polymerase chain reaction (qPCR) technologies are expanding from a subject of research to routine environmental and public health laboratory testing. Readily available, reliable reference material is needed to interpret qPCR measurements, particularly across laboratories. Standard Reference Material® 2917 (NIST SRM® 2917) is a DNA plasmid construct that functions with multiple water quality qPCR assays allowing for estimation of total fecal pollution and identification of key fecal sources. This study investigates SRM 2917 interlaboratory performance based on repeated measures of 12 qPCR assays by 14 laboratories (n = 1008 instrument runs). Using a Bayesian approach, single-instrument run data are combined to generate assay-specific global calibration models allowing for characterization of within- and between-lab variability. Comparable data sets generated by two additional laboratories are used to assess new SRM 2917 data acceptance metrics. SRM 2917 allows for reproducible single-instrument run calibration models across laboratories, regardless of qPCR assay. In addition, global models offer multiple data acceptance metric options that future users can employ to minimize variability, improve comparability of data across laboratories, and increase confidence in qPCR measurements.


Subject(s)
Benchmarking , Water Quality , Bayes Theorem , Real-Time Polymerase Chain Reaction , DNA
20.
AWWA Water Sci ; 4(2): e1270, 2022.
Article in English | MEDLINE | ID: mdl-35865674

ABSTRACT

The study goal was to better understand the risks of elevated copper levels at US schools and childcare centers. Copper health effects, chemistry, occurrence, and remediation actions were reviewed. Of the more than 98,000 schools and 500,000 childcare centers, only 0.2% had copper water testing data in the federal Safe Drinking Water Information System database. Of the facilities designated public water systems, about 13% had reported an exceedance. Schools that were not designated a public water system (PWS) also had exceedances. Few studies document levels in schools and childcare centers. Widely different sampling and remedial actions were reported. Flushing contaminated water was the most evaluated remedial action but was unreliable because copper quickly rebounded when flushing stopped. Building water treatment systems have been used, but some were not capable of making the water safe. The health risk was difficult to determine due to the limited occurrence data and lack of best management practice studies. A national drinking water testing campaign and field studies are recommended.

SELECTION OF CITATIONS
SEARCH DETAIL