Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Mol Oral Microbiol ; 39(2): 62-79, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37257865

ABSTRACT

Increasing evidence support the association between the oral microbiome and human systemic diseases. This association may be attributed to the ability of many oral microbes to influence the inflammatory microenvironment. Herein, we focused our attention on the bidirectional relationship between periodontitis and type 2 diabetes using high-resolution whole metagenomic shotgun analysis to explore the composition and functional profile of the subgingival microbiome in diabetics and non-diabetics subjects with different periodontal conditions. In the present study, the abundance of metabolic pathways encoded by oral microbes was reconstructed from the metagenome, and we identified a set of dysregulated metabolic pathways significantly enriched in the periodontitis and/or diabetic patients. These pathways were mainly involved in branched and aromatic amino acids metabolism, fatty acid biosynthesis and adipocytokine signaling pathways, ferroptosis and iron homeostasis, nucleotide metabolism, and finally in the peptidoglycan and lipopolysaccharides synthesis. Overall, the results of the present study provide evidence in favor of the hypothesis that during the primary inflammatory challenge, regardless of whether it is induced by periodontitis or diabetes, endotoxemia and/or the release of inflammatory cytokines cause a change in precursor and/or in circulating innate immune cells. Dysbiosis and inflammation, also via oral-gut microbiome axis or adipose tissue, reduce the efficacy of the host immune response, while fueling inflammation and can induce that metabolic/epigenetic reprogramming of chromatin accessibility of genes related to the immune response. Moreover, the presence of an enhanced ferroptosis and an imbalance in purine/pyrimidine metabolism provides new insights into the role of ferroptotic death in this comorbidity.


Subject(s)
Dental Plaque , Diabetes Mellitus, Type 2 , Microbiota , Periodontal Diseases , Periodontitis , Humans , Diabetes Mellitus, Type 2/complications , Microbiota/genetics , Inflammation
2.
World J Microbiol Biotechnol ; 39(1): 37, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36472670

ABSTRACT

Metagenomic next-generation sequencing (mNGS) allows the monitoring of microbiota composition of murine colonies employed for scientific purposes in a single test by assessing the composition of gut microbiome and the detection of pathogens from fecal pellets. In this study, we tested the potential use of mNGS for monitoring both microbiota composition and the presence of pathogens through Environmental Health Monitoring, by using exhaust dust collection filters derived from individually ventilated cages (IVC) systems.mNGS analysis was performed on nucleic acids isolated from filters collecting air from the exhaust of: (1) cages with mice housed in a non-pathogen free facility; (2) animal-free cages with clean chow and bedding from the same facility; (3) cages housing mice from a specific-pathogen free (SPF) facility. mNGS results revealed correspondence between microbiome composition from fecal pellets and filter, including pathogenic bacteria (Helicobacter hepaticus, Helicobacter typhlonius, Chlamydia muridarum, Rodentibacter pneumotropicus, Citrobacter rodentium), intestinal protozoa (Tritrichomonas muris, Spironucleus muris) nematoda (Aspiculuris tetraptera) and eukaryotic parasites (Myocoptes musculinus), present in the colony. Entamoeba muris and Syphacia obvelata were detected in fecal pellets but not in filter. The animal free exhaust dust filter, exposed to clean cages (no mice) placed in the IVC after removal of all mice, exhibited the presence of the same pathogens due to contaminated connecting pipes, confirming the sensitivity of the approach. Conversely, the filter from SPF colony revealed the absence of pathogens.The current use of exhaust dust collection filters in health surveillance requires multiple molecular tests to identify specific pathogens and does not provide information on the colony microbiome. This work provides the proof-of-principle that assaying exhaust dust collection filters by mNGS for microbiota monitoring of laboratory mice is feasible. In its daily application, results suggest the usefulness of the test in SPF facilities, where pathogenic micro-organisms are expected to be absent. mNGS analysis of exhaust dust collection filters allows the analysis of multiple cages, reducing the number of tests required for pathogen detection and corresponding costs, and avoiding the use of sentinel mice.


Subject(s)
Environmental Health , Metagenomics , Mice , Animals
3.
Life (Basel) ; 12(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36556413

ABSTRACT

Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.

5.
Mol Ther Nucleic Acids ; 29: 538-549, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36035756

ABSTRACT

Palbociclib is in early-stage clinical testing in advanced hepatocellular carcinoma (HCC). Here, we investigated whether the anti-tumor activity of palbociclib, which prevents the CDK4/6-mediated phosphorylation of RB1 but simultaneously activates AKT signaling, could be improved by its combination with a PI3K/AKT/mTOR inhibitor in liver cancer models. The selective pan-AKT inhibitor, MK-2206, or the microRNA-199a-3p were tested in combination with palbociclib in HCC cell lines and in the TG221 HCC transgenic mouse model. The combination palbociclib/MK-2206 was highly effective, but too toxic to be tolerated by mice. Conversely, the combination miR-199a-3p mimics/palbociclib not only induced a complete or partial regression of tumor lesions, but was also well tolerated. After 3 weeks of treatment, the combination produced a significant reduction in number and size of tumor nodules in comparison with palbociclib or miR-199a-3p mimics used as single agents. Moreover, we also reported the efficacy of this combination against sorafenib-resistant cells in vitro and in vivo. At the molecular level, the combination caused the simultaneous decrease of the phosphorylation of both RB1 and of AKT. Our findings provide pre-clinical evidence for the efficacy of the combination miR-199a-3p/palbociclib as anti-HCC treatment or as a new approach to overcome sorafenib resistance.

6.
Int J Mol Sci ; 23(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35955679

ABSTRACT

Liquid biopsy has advantages over tissue biopsy, but also some technical limitations that hinder its wide use in clinical applications. In this study, we aimed to evaluate the usefulness of liquid biopsy for the clinical management of patients with advanced-stage oncogene-addicted non-small-cell lung adenocarcinomas. The investigation was conducted on a series of cases-641 plasma samples from 57 patients-collected in a prospective consecutive manner, which allowed us to assess the benefits and limitations of the approach in a real-world clinical context. Thirteen samples were collected at diagnosis, and the additional samples during the periodic follow-up visits. At diagnosis, we detected mutations in ctDNA in 10 of the 13 cases (77%). During follow-up, 36 patients progressed. In this subset of patients, molecular analyses of plasma DNA/RNA at progression revealed the appearance of mutations in 29 patients (80.6%). Mutations in ctDNA/RNA were typically detected an average of 80 days earlier than disease progression assessed by RECIST or clinical evaluations. Among the cases positive for mutations, we observed 13 de novo mutations, responsible for the development of resistance to therapy. This study allowed us to highlight the advantages and disadvantages of liquid biopsy, which led to suggesting algorithms for the use of liquid biopsy analyses at diagnosis and during monitoring of therapy response.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Circulating Tumor DNA , Lung Neoplasms , Adenocarcinoma/genetics , Adenocarcinoma of Lung/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/pathology , Mutation , Oncogenes , Prospective Studies , RNA
7.
J Appl Microbiol ; 133(3): 1506-1519, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35686660

ABSTRACT

AIMS: The role of a Acinetobacter johnsonii strain, isolated from a soil sample, in the biotransformation of bile acids (BAs) was already described but the enzymes responsible for these transformations were only partially purified and molecularly characterized. METHODS AND RESULTS: This study describes the use of hybrid de novo assemblies, that combine long-read Oxford Nanopore and short-read Illumina sequencing strategies, to reconstruct the entire genome of A. johnsonii ICE_NC strain and to identify the coding region for a 12α-hydroxysteroid dehydrogenase (12α-HSDH), involved in BAs metabolism. The de novo assembly of the A. johnsonii ICE_NC genome was generated using Canu and Unicycler, both strategies yielded a circular chromosome of about 3.6 Mb and one 117 kb long plasmid. Gene annotation was performed on the final assemblies and the gene for 12α-HSDH was detected on the plasmid. CONCLUSIONS: Our findings illustrate the added value of long read sequencing in addressing the challenges of whole genome characterization and plasmid reconstruction in bacteria. These approaches also allowed the identification of the A. johnsonii ICE_NC gene for the 12α-HSDH enzyme, whose activity was confirmed at the biochemical level. SIGNIFICANCE AND IMPACT OR THE STUDY: At present, this is the first report on the characterization of a 12α-HSDH gene in an A. johnsonii strain able to biotransform cholic acid into ursodeoxycholic acid, a promising therapeutic agent for several diseases.


Subject(s)
Acinetobacter , Hydroxysteroid Dehydrogenases , Acinetobacter/genetics , Acinetobacter/metabolism , Bile Acids and Salts , Genome, Bacterial , High-Throughput Nucleotide Sequencing/methods , Hydroxysteroid Dehydrogenases/chemistry , Hydroxysteroid Dehydrogenases/genetics , Hydroxysteroid Dehydrogenases/metabolism
8.
Life (Basel) ; 12(2)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35207576

ABSTRACT

The current SARS-CoV-2 pandemic has emerged as an international challenge with strong medical and socioeconomic impact. The spectrum of clinical manifestations of SARS-CoV-2 is wide, covering asymptomatic or mild cases up to severe and life-threatening complications. Critical courses of SARS-CoV-2 infection are thought to be driven by the so-called "cytokine storm", derived from an excessive immune response that induces the release of proinflammatory cytokines and chemokines. In recent years, non-coding RNAs (ncRNAs) emerged as potential diagnostic and therapeutic biomarkers in both inflammatory and infectious diseases. Therefore, the identification of SARS-CoV-2 miRNAs and host miRNAs is an important research topic, investigating the host-virus crosstalk in COVID-19 infection, trying to answer the pressing question of whether miRNA-based therapeutics can be employed to tackle SARS-CoV-2 complications. In this review, we aimed to directly address ncRNA role in SARS-CoV-2-immune system crosstalk upon COVID-19 infection, particularly focusing on inflammatory pathways and cytokine storm syndromes.

9.
Anim Microbiome ; 3(1): 53, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34325744

ABSTRACT

BACKGROUND: Health surveillance of murine colonies employed for scientific purposes aim at detecting unwanted infection that can affect the well-being of animals and personnel, and potentially undermine scientific results. In this study, we investigated the use of a next-generation sequencing (NGS) metagenomic approach for monitoring the microbiota composition and uncovering the possible presence of pathogens in mice housed in specific pathogen-free (SPF) or conventional (non-SPF) facilities. RESULTS: Analysis of metagenomic NGS assay through public and free algorithms and databases allowed to precisely assess the composition of mouse gut microbiome and quantify the contribution of the different microorganisms at the species level. Sequence analysis allowed the uncovering of pathogens or the presence of imbalances in the microbiota composition. In several cases, fecal pellets taken from conventional facilities were found to carry gene sequences from bacterial pathogens (Helicobacter hepaticus, Helicobacter typhlonius, Chlamydia muridarum, Streptococcus pyogenes, Rodentibacter pneumotropicus, Citrobacter rodentium, Staphylococcus aureus), intestinal protozoa (Entamoeba muris, Tritrichomonas muris, Spironucleus muris) nematoda (Aspiculuris tetraptera, Syphacia obvelata), eukaryotic parasites (Myocoptes musculinus) and RNA virus (Norwalk virus). Thus, the use of NGS metagenomics can reduce the number of tests required for the detection of pathogens and avoid the use of sentinel mice. CONCLUSIONS: In summary, in comparison with standard approaches, which require multiple types of test, NGS assay can detect bacteria, fungi, DNA and RNA viruses, and eukaryotic parasites from fecal pellets in a single test. Considering the need to protect animal well-being and to improve the success and reproducibility of preclinical studies, this work provides the proof-of-concept that the use of NGS metagenomics for health monitoring of laboratory mice is a feasible and dependable approach, that is able to broaden the current concept of health monitoring of laboratory mice from "pathogen surveillance" to a more inclusive "microbiota surveillance".

10.
Mol Oncol ; 15(10): 2732-2751, 2021 10.
Article in English | MEDLINE | ID: mdl-34075699

ABSTRACT

Metastasis is responsible for the majority of cancer-related deaths. Particularly, challenging is the management of metastatic cancer of unknown primary site (CUP), whose tissue of origin (TOO) remains undetermined even after extensive investigations and whose therapy is rather unspecific and poorly effective. Molecular approaches to identify the most probable TOO of CUPs can overcome some of these issues. In this study, we applied a predetermined set of 89 microRNAs (miRNAs) to infer the TOO of 53 metastatic cancers of unknown or uncertain origin. The miRNA expression was assessed with droplet digital PCR in 159 samples, including primary tumors from 17 tumor classes (reference set) and metastases of known and unknown origin (test set). We combined two different statistical models for class prediction to obtain the most probable TOOs: the nearest shrunken centroids approach of Prediction Analysis of Microarrays (PAMR) and the least absolute shrinkage and selection operator (LASSO) models. The molecular test was successful for all formalin-fixed paraffin-embedded samples and provided a TOO identification within 1 week from the biopsy procedure. The most frequently predicted origins were gastrointestinal, pancreas, breast, lung, and bile duct. The assay was applied also to multiple metastases from the same CUP, collected from different metastatic sites: The predictions showed a strong agreement, intrinsically validating our assay. The final CUPs' TOO prediction was compared with the clinicopathological hypothesis of primary site. Moreover, a panel of 13 miRNAs proved to have prognostic value and be associated with overall survival in CUP patients. Our study demonstrated that miRNA expression profiling in CUP samples could be employed as diagnostic and prognostic test. Our molecular analysis can be performed on request, concomitantly with standard diagnostic workup and in association with genetic profiling, to offer valuable indications about the possible primary site, thereby supporting treatment decisions.


Subject(s)
MicroRNAs , Neoplasms, Unknown Primary , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/analysis , MicroRNAs/genetics , Neoplasms, Unknown Primary/diagnosis , Neoplasms, Unknown Primary/genetics , Neoplasms, Unknown Primary/pathology , Polymerase Chain Reaction
11.
Front Cell Dev Biol ; 9: 666156, 2021.
Article in English | MEDLINE | ID: mdl-34178989

ABSTRACT

Cancers of unknown primary (CUPs) comprise a heterogeneous group of rare metastatic tumors whose primary site cannot be identified after extensive clinical-pathological investigations. CUP patients are generally treated with empirical chemotherapy and have dismal prognosis. As recently reported, CUP genome presents potentially druggable alterations for which targeted therapies could be proposed. The paucity of tumor tissue, as well as the difficult DNA testing and the lack of dedicated panels for target gene sequencing are further relevant limitations. Here, we propose that circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) could be used to identify actionable mutations in CUP patients. Blood was longitudinally collected from two CUP patients. CTCs were isolated with CELLSEARCH® and DEPArrayTM NxT and Parsortix systems, immunophenotypically characterized and used for single-cell genomic characterization with Ampli1TM kits. Circulating cell-free DNA (ccfDNA), purified from plasma at different time points, was tested for tumor mutations with a CUP-dedicated, 92-gene custom panel using SureSelect Target Enrichment technology. In parallel, FFPE tumor tissue was analyzed with three different assays: FoundationOne CDx assay, DEPArray LibPrep and OncoSeek Panel, and the SureSelect custom panel. These approaches identified the same mutations, when the gene was covered by the panel, with the exception of an insertion in APC gene. which was detected by OncoSeek and SureSelect panels but not FoundationOne. FGFR2 and CCNE1 gene amplifications were detected in single CTCs, tumor tissue, and ccfDNAs in one patient. A somatic variant in ARID1A gene (p.R1276∗) was detected in the tumor tissue and ccfDNAs. The alterations were validated by Droplet Digital PCR in all ccfDNA samples collected during tumor evolution. CTCs from a second patient presented a pattern of recurrent amplifications in ASPM and SEPT9 genes and loss of FANCC. The 92-gene custom panel identified 16 non-synonymous somatic alterations in ccfDNA, including a deletion (I1485Rfs∗19) and a somatic mutation (p. A1487V) in ARID1A gene and a point mutation in FGFR2 gene (p.G384R). Our results support the feasibility of non-invasive liquid biopsy testing in CUP cases, either using ctDNA or CTCs, to identify CUP genetic alterations with broad NGS panels covering the most frequently mutated genes.

12.
Mol Oncol ; 14(9): 2163-2175, 2020 09.
Article in English | MEDLINE | ID: mdl-32441866

ABSTRACT

Cytopathological analyses of bronchial washings (BWs) collected during fibre-optic bronchoscopy are often inconclusive for lung cancer diagnosis. To address this issue, we assessed the suitability of conducting molecular analyses on BWs, with the aim to improve the diagnosis and outcome prediction of lung cancer. The methylation status of RASSF1A, CDH1, DLC1 and PRPH was analysed in BW samples from 91 lung cancer patients and 31 controls, using a novel two-colour droplet digital methylation-specific PCR (ddMSP) technique. Mutations in ALK, BRAF, EGFR, ERBB2, KRAS, MAP2K1, MET, NRAS, PIK3CA, ROS1 and TP53 and gene fusions of ALK, RET and ROS1 were also investigated, using next-generation sequencing on 73 lung cancer patients and 14 tumour-free individuals. Our four-gene methylation panel had significant diagnostic power, with 97% sensitivity and 74% specificity (relative risk, 7.3; odds ratio, 6.1; 95% confidence interval, 12.7-127). In contrast, gene mutation analysis had a remarkable value for predictive, but not for diagnostic, purposes. Actionable mutations in EGFR, HER2 and ROS1 as well as in other cancer genes (KRAS, PIK3CA and TP53) were detected. Concordance with gene mutations uncovered in tumour biopsies was higher than 90%. In addition, bronchial-washing analyses permitted complete patient coverage and the detection of additional actionable mutations. In conclusion, BWs are a useful material on which to perform molecular tests based on gene panels: aberrant gene methylation and mutation analyses could be performed as approaches accompanying current diagnostic and predictive assays during the initial workup phase. This study establishes the grounds for further prospective investigation.


Subject(s)
Bronchoalveolar Lavage , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Molecular Diagnostic Techniques , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , DNA Methylation/genetics , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Mutation/genetics
13.
Cancers (Basel) ; 11(11)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739536

ABSTRACT

Hepatocellular carcinoma (HCC) is a deadly disease and therapeutic efficacy in advanced HCC is limited. Since progression of chronic liver disease to HCC involves a long latency period of a few decades, a significant window of therapeutic opportunities exists for prevention of HCC and improve patient prognosis. Nonetheless, there has been no clinical advancement in instituting HCC chemopreventive strategies. Some of the major challenges are heterogenous genetic aberrations of HCC, significant modulation of tumor microenvironment and incomplete understanding of HCC tumorigenesis. To this end, animal models of HCC are valuable tools to evaluate biology of tumor initiation and progression with specific insight into molecular and genetic mechanisms involved. In this review, we describe various animal models of HCC that facilitate effective ways to study therapeutic prevention strategies that have translational potential to be evaluated in a clinical context.

14.
Oncogene ; 38(45): 7035-7045, 2019 11.
Article in English | MEDLINE | ID: mdl-31409896

ABSTRACT

Metformin is a hypoglycaemic agent used to treat type 2 diabetes mellitus (DM2) patients, with a broad safety profile. Since previous epidemiological studies had shown that the incidence of hepatocellular carcinoma (HCC) decreased significantly in metformin treated DM2 patients, we hypothesised that intervention with metformin could reduce the risk of neoplastic transformation of hepatocytes. HCC is the most common primary liver malignancy and it generally originates in a background of liver fibrosis and cirrhosis. In the present study, we took advantage of a transgenic mouse (TG221) characterized by microRNA-221 overexpression, with cirrhotic liver background induced by chronic administration of carbon tetrachloride (CCl4). This mouse model develops fibrosis, cirrhosis and liver tumours that become visible in 100% of mice at 5-6 months of age. Our results demonstrated that metformin intervention improves liver function, inhibits hepatic stellate cell (HSC) activation, reduces liver fibrosis, depletes lipid accumulation in hepatocytes, halts progression to decompensated cirrhosis and abrogates development HCC in CCl4 challenged transgenic mouse model. The study establishes the rationale for investigating metformin in cirrhotic patients regardless of concomitant DM2 status.


Subject(s)
Carcinoma, Hepatocellular/prevention & control , Cell Transformation, Neoplastic/drug effects , Disease Models, Animal , Fibrosis/drug therapy , Hypoglycemic Agents/pharmacology , Liver Neoplasms, Experimental/prevention & control , Metformin/pharmacology , Animals , Carbon Tetrachloride/toxicity , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/pathology , Fibrosis/etiology , Fibrosis/pathology , Humans , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/pathology , Male , Mice , Mice, Transgenic , MicroRNAs/genetics
15.
Arch Oral Biol ; 104: 13-23, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31153098

ABSTRACT

OBJECTIVE: The aim of this study was to use high-resolution whole metagenomic shotgun sequencing to characterize the subgingival microbiome of patients with/without type 2 Diabetes Mellitus and with/without periodontitis. DESIGN: Twelve subjects, falling into one of the four study groups based on the presence/absence of poorly controlled type 2 Diabetes Mellitus and moderate-severe periodontitis, were selected. For each eligible subject, subgingival plaque samples were collected at 4 sites, all representative of the periodontal condition of the individual (i.e., non-bleeding sulci in subjects without a history of periodontitis, bleeding pockets in patients with moderate-severe periodontitis). The subgingival microbiome was evaluated using high-resolution whole metagenomic shotgun sequencing. RESULTS: The results showed that: (i) the presence of type 2 Diabetes Mellitus and/or periodontitis were associated with a tendency of the subgingival microbiome to decrease in richness and diversity; (ii) the presence of type 2 Diabetes Mellitus was not associated with significant differences in the relative abundance of one or more species in patients either with or without periodontitis; (iii) the presence of periodontitis was associated with a significantly higher relative abundance of Anaerolineaceae bacterium oral taxon 439 in type 2 Diabetes Mellitus patients. CONCLUSIONS: Whole metagenomic shotgun sequencing of the subgingival microbiome was extremely effective in the detection of low-abundant taxon. Our results point out a significantly higher relative abundance of Anaerolineaceae bacterium oral taxon 439 in patients with moderate to severe periodontitis vs patients without history of periodontitis, which was maintained when the comparison was restricted to type 2 diabetics.


Subject(s)
Dental Plaque , Diabetes Mellitus, Type 2 , Metagenomics , Microbiota , Mouth , Periodontitis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/microbiology , Gingiva , Humans , Mouth/microbiology , Periodontitis/complications , Periodontitis/microbiology
16.
Mol Ther Nucleic Acids ; 14: 239-250, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30641476

ABSTRACT

Most hepatocellular carcinomas (HCCs) arise in the context of chronic liver disease and/or cirrhosis. Thus, chemoprevention in individuals at risk represents an important but yet unproven approach. In this study, we investigated the ability of microRNA (miRNA)-based molecules to prevent liver cancer development in a cirrhotic model. To this end, we developed a mouse model able to recapitulate the natural progression from fibrosis to HCC, and then we tested the prophylactic activity of an miRNA-based approach in the model. The experiments were carried out in the TG221 transgenic mouse, characterized by the overexpression of miR-221 in the liver and predisposed to the development of liver tumors. TG221 as well as wild-type mice were exposed to the hepatotoxin carbon tetrachloride (CCl4) to induce chronic liver damage. All mice developed liver cirrhosis, but only TG221 mice developed nodular lesions in 100% of cases within 6 months of age. The spectrum of lesions ranged from dysplastic foci to carcinomas. To investigate miRNA-based prophylactic approaches, anti-miR-221 oligonucleotides or miR-199a-3p mimics were administered to TG221 CCl4-treated mice. Compared to control animals, a significant reduction in number, size, and, most significantly, malignant phenotype of liver nodules was observed, thus demonstrating an important prophylactic action of miRNA-based molecules. In summary, in this article, we not only report a simple model of liver cancer in a cirrhotic background but also provide evidence for a potential miRNA-based approach to reduce the risk of HCC development.

17.
Mol Ther Nucleic Acids ; 11: 485-493, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29858083

ABSTRACT

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Prognosis is poor, and therapeutic options are limited. MicroRNAs (miRNAs) have emerged as potential therapeutic molecules against cancer. Here, we investigated the therapeutic efficacy of miR-199a-3p, an miRNA highly expressed in normal liver and downregulated in virtually all HCCs. The therapeutic value of miR-199a-3p mimic molecules was assayed in the TG221 mouse, a transgenic model highly predisposed to the development of liver cancer. Administration of miR-199a-3p mimics in the TG221 transgenic mouse showing liver cancer led to a significant reduction of number and size of tumor nodules compared to control animals. In vivo delivery confirmed protein downregulation of the miR-199a-3p direct targets, mechanistic target of rapamycin (MTOR) and p21 activated kinase 4 (PAK4), ultimately leading to the repression of FOXM1. Remarkably, the anti-tumor activity of miR-199a-3p mimics was comparable to that obtained with sorafenib. These results suggested that miR-199a-3p may be considered a promising HCC therapeutic option.

18.
Oncotarget ; 9(20): 15350-15364, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29632649

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common liver cancer and second leading cause of cancer related death worldwide. Most HCCs occur in a damaged cirrhotic background and it may be difficult to discriminate between regenerative nodules and early HCCs. No dependable molecular biomarker exists for the early detection of HCC. MicroRNAs (miRNAs) have attracted attention as potential blood-based biomarkers. To identify circulating miRNAs with diagnostic potential in HCC, we performed preliminary RNAseq studies on plasma samples from a small set of HCC patients, cirrhotic patients and healthy controls. Then, out of the identified miRNAs, we investigated miR-101-3p, miR-106b-3p, miR-1246 and miR-411-5p in plasma of independent HCC patients' cohorts. The use of droplet digital PCR (ddPCR) confirmed the aberrant levels of these miRNAs. The diagnostic performances of each miRNA and their combinations were measured using Receiver Operating Characteristic (ROC) curve analyses: a classifier consisting of miR-101-3p, miR-1246 and miR-106b-3p produced the best diagnostic precision in plasma of HCC vs. cirrhotic patients (AUC = 0.99). A similar performance was found when the levels of miRNAs of HCC patients were compared to healthy controls (AUC = 1.00). We extended the analyses of the same miRNAs to serum samples. In serum of HCC vs. cirrhotic patients, the combination of miR-101-3p and miR-106b-3p exhibited the best diagnostic accuracy with an AUC = 0.96. Thus, circulating miR-101-3p, miR-106b-3p and miR-1246, either individually or in combination, exhibit a considerable potential value as diagnostic biomarkers of HCC.

19.
Cancer Lett ; 419: 167-174, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29366802

ABSTRACT

Proliferating cancer cells reprogram their metabolic circuitry to thrive in an environment deficient in nutrients and oxygen. Cancer cells exhibit a higher rate of glucose metabolism than normal somatic cells, which is achieved by switching from oxidative phosphorylation to aerobic glycolysis to meet the energy and metabolites demands of tumour progression. This phenomenon, which is known as the Warburg effect, has generated renewed interest in the process of glucose metabolism reprogramming in cancer cells. Several regulatory pathways along with glycolytic enzymes are responsible for the emergence of glycolytic dependence. Non-coding (nc)RNAs are a class of functional RNA molecules that are not translated into proteins but regulate target gene expression. NcRNAs have been shown to be involved in various biological processes, including glucose metabolism. In this review, we describe the regulatory role of ncRNAs-specifically, microRNAs and long ncRNAs-in the glycolytic switch and propose that ncRNA-based therapeutics can be used to inhibit the process of glucose metabolism reprogramming in cancer cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Glucose/metabolism , Glycolysis/genetics , Neoplasms/genetics , RNA, Untranslated/genetics , Humans , MicroRNAs/genetics , Models, Genetic , Neoplasms/metabolism , Neoplasms/pathology , RNA, Long Noncoding/genetics , Signal Transduction/genetics
20.
J Vis Exp ; (112)2016 06 26.
Article in English | MEDLINE | ID: mdl-27403944

ABSTRACT

Circulating (of cell-free) microRNAs (miRNAs) are released from cells into the blood stream. The amount of specific microRNAs in the circulation has been linked to a disease state and has the potential to be used as disease biomarker. A sensitive and accurate method for circulating microRNA quantification using a dye-based chemistry and droplet digital PCR technology has been recently developed. Specifically, using Locked Nucleic Acid (LNA)-based miRNA-specific primers with a green fluorescent DNA-binding dye in a compatible droplet digital PCR system it is possible to obtain the absolute quantification of specific miRNAs. Here, we describe how performing this technique to assess miRNA amount in biological fluids, such as plasma and serum, is both feasible and effective.


Subject(s)
Polymerase Chain Reaction , DNA , Fluorescent Dyes , MicroRNAs
SELECTION OF CITATIONS
SEARCH DETAIL
...