Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 361: 142514, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830468

ABSTRACT

Energy is a crucial entity for the development and it has various alternative forms of energy sources. Recently, the synthesis of nanoparticles using benign biocatalyst has attracted increased attention. In this study, silver nanoparticles were synthesized and characterized using Azadirachta indica plant-derived phytochemical as the reducing agent. Biomass of the microalga Chlorella sp. cultivated in BG11 medium increased after exposure to low concentrations of up to 0.48 mg L-1 AgNPs. In addition, algal cells treated with 0.24 mg L-1 AgNPs and cultivated in BG110 medium which contained no nitrogen source showed the highest hydrogen yield of 10.8 mmol L-1, whereas the untreated cells under the same conditions showed very low hydrogen yield of 0.003 mmol L-1. The enhanced hydrogen production observed in the treated cells was consistent with an increase in hydrogenase activity. Treatment of BG110 grown cells with low concentration of green synthesized AgNPs at 0.24 mg L-1 enhanced hydrogenase activity with a 5-fold increase of enzyme activity compared to untreated BG110 grown cells. In addition, to improve photolytic water splitting efficiency for hydrogen production, cells treated with AgNPs at 0.24 mg L-1 showed highest oxygen evolution signifying improvement in photosynthesis. The silver nanoparticles synthesized using phytochemicals derived from plant enhanced both microalgal biomass and hydrogen production with an added advantage of CO2 reduction which could be achieved due to an increase in biomass. Hence, treating microalgae with nanoparticles provided a promising strategy to reduce the atmospheric carbon dioxide as well as increasing production of hydrogen as clean energy.


Subject(s)
Biomass , Chlorella , Hydrogen , Metal Nanoparticles , Nitrogen , Silver , Metal Nanoparticles/chemistry , Chlorella/metabolism , Chlorella/drug effects , Silver/chemistry , Hydrogen/metabolism , Nitrogen/metabolism , Photosynthesis/drug effects , Hydrogenase/metabolism , Microalgae/metabolism
2.
Environ Res ; 236(Pt 2): 116815, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37541411

ABSTRACT

Wastewater treatment remains the most significant delinquent issue world-wide. Generally, wastewater treatment involves filtration followed by acidified de-emulsification through photocatalytic reduction. The aim of the present study is to reduce the use of nanoparticles in wastewater treatment and also to find an appropriate alternative to replace cotton fiber filters used in water treatment plant. The cotton fiber filters are highly prone to bacterial film development leading to bactericidal degradation of the fibers. We developed a ZnO-chitosan nanocomposite coated fiber for wastewater treatment to enhance its photocatalytic activity under acidic condition. The fiber showed high degree of photocatalytic degradation activity, reducing rhodamine B dye, chemical oxygen demand and chromium levels in the synthetic wastewater to 37, 79 and 51% respectively under highly acidic condition. Additionally, ZnO-chitosan nanocomposite did not cause mortality on Danio rerio embryo after 72 h incubation. The ZnO-chitosan nanocomposite coated fiber showed strong antibacterial activity against Escherichia coli and Staphylococcus aureus with a reduction of 96% and 99% respectively. This study demonstrated the potential of a novel smart fiber in wastewater treatment and biomedical applications.


Subject(s)
Chitosan , Nanocomposites , Nanoparticles , Zinc Oxide , Chitosan/chemistry , Wastewater , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metals , Nanocomposites/chemistry , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...