Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 668, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004715

ABSTRACT

BACKGROUND: Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT: Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS: By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.


Subject(s)
Biofortification , Malnutrition , Micronutrients , Triticum , Triticum/metabolism , Triticum/genetics , Micronutrients/metabolism , Malnutrition/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Zinc/metabolism , Nutritive Value
2.
Front Plant Sci ; 15: 1386494, 2024.
Article in English | MEDLINE | ID: mdl-39022610

ABSTRACT

Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, poses a significant threat to wheat production, necessitating the development of genetically resistant varieties for long-term control. Therefore, exploring genetic architecture of PM in wheat to uncover important genomic regions is an important area of wheat research. In recent years, the utilization of meta-QTL (MQTL) analysis has gained prominence as an essential tool for unraveling the complex genetic architecture underlying complex quantitative traits. The aim of this research was to conduct a QTL meta-analysis to pinpoint the specific genomic regions in wheat responsible for governing PM resistance. This study integrated 222 QTLs from 33 linkage-based studies using a consensus map with 54,672 markers. The analysis revealed 39 MQTLs, refined to 9 high-confidence MQTLs (hcMQTLs) with confidence intervals of 0.49 to 12.94 cM. The MQTLs had an average physical interval of 41.00 Mb, ranging from 0.000048 Mb to 380.71 Mb per MQTL. Importantly, 18 MQTLs co-localized with known resistance genes like Pm2, Pm3, Pm8, Pm21, Pm38, and Pm41. The study identified 256 gene models within hcMQTLs, providing potential targets for marker-assisted breeding and genomic prediction programs to enhance PM resistance. These MQTLs would serve as a foundation for fine mapping, gene isolation, and functional genomics studies, facilitating a deeper understanding of molecular mechanisms. The identification of candidate genes opens up exciting possibilities for the development of PM-resistant wheat varieties after validation.

3.
Plant Cell Rep ; 43(7): 166, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862789

ABSTRACT

KEY MESSAGE: Unraveling genetic markers for MYMIV resistance in urdbean, with 8 high-confidence marker-trait associations identified across diverse environments, provides crucial insights for combating MYMIV disease, informing future breeding strategies. Globally, yellow mosaic disease (YMD) causes significant yield losses, reaching up to 100% in favorable environments within major urdbean cultivating regions. The introgression of genomic regions conferring resistance into urdbean cultivars is crucial for combating YMD, including resistance against mungbean yellow mosaic India virus (MYMIV). To uncover the genetic basis of MYMIV resistance, we conducted a genome-wide association study (GWAS) using three multi-locus models in 100 diverse urdbean genotypes cultivated across six individual and two combined environments. Leveraging 4538 high-quality single nucleotide polymorphism (SNP) markers, we identified 28 unique significant marker-trait associations (MTAs) for MYMIV resistance, with 8 MTAs considered of high confidence due to detection across multiple GWAS models and/or environments. Notably, 4 out of 28 MTAs were found in proximity to previously reported genomic regions associated with MYMIV resistance in urdbean and mungbean, strengthening our findings and indicating consistent genomic regions for MYMIV resistance. Among the eight highly significant MTAs, one localized on chromosome 6 adjacent to previously identified quantitative trait loci for MYMIV resistance, while the remaining seven were novel. These MTAs contain several genes implicated in disease resistance, including four common ones consistently found across all eight MTAs: receptor-like serine-threonine kinases, E3 ubiquitin-protein ligase, pentatricopeptide repeat, and ankyrin repeats. Previous studies have linked these genes to defense against viral infections across different crops, suggesting their potential for further basic research involving cloning and utilization in breeding programs. This study represents the first GWAS investigation aimed at identifying resistance against MYMIV in urdbean germplasm.


Subject(s)
Begomovirus , Disease Resistance , Genome-Wide Association Study , Plant Diseases , Polymorphism, Single Nucleotide , Vigna , Vigna/genetics , Vigna/virology , Disease Resistance/genetics , Begomovirus/physiology , Begomovirus/genetics , Plant Diseases/virology , Plant Diseases/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Genome, Plant/genetics , Genotype , Genetic Markers
4.
BMC Genomics ; 25(1): 338, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575927

ABSTRACT

BACKGROUND: Due to rising costs, water shortages, and labour shortages, farmers across the globe now prefer a direct seeding approach. However, submergence stress remains a major bottleneck limiting the success of this approach in rice cultivation. The merger of accumulated rice genetic resources provides an opportunity to detect key genomic loci and candidate genes that influence the flooding tolerance of rice. RESULTS: In the present study, a whole-genome meta-analysis was conducted on 120 quantitative trait loci (QTL) obtained from 16 independent QTL studies reported from 2004 to 2023. These QTL were confined to 18 meta-QTL (MQTL), and ten MQTL were successfully validated by independent genome-wide association studies from diverse natural populations. The mean confidence interval (CI) of the identified MQTL was 3.44 times narrower than the mean CI of the initial QTL. Moreover, four core MQTL loci with genetic distance less than 2 cM were obtained. By combining differentially expressed genes (DEG) from two transcriptome datasets with 858 candidate genes identified in the core MQTL regions, we found 38 common differentially expressed candidate genes (DECGs). In silico expression analysis of these DECGs led to the identification of 21 genes with high expression in embryo and coleoptile under submerged conditions. These DECGs encode proteins with known functions involved in submergence tolerance including WRKY, F-box, zinc fingers, glycosyltransferase, protein kinase, cytochrome P450, PP2C, hypoxia-responsive family, and DUF domain. By haplotype analysis, the 21 DECGs demonstrated distinct genetic differentiation and substantial genetic distance mainly between indica and japonica subspecies. Further, the MQTL7.1 was successfully validated using flanked marker S2329 on a set of genotypes with phenotypic variation. CONCLUSION: This study provides a new perspective on understanding the genetic basis of submergence tolerance in rice. The identified MQTL and novel candidate genes lay the foundation for marker-assisted breeding/engineering of flooding-tolerant cultivars conducive to direct seeding.


Subject(s)
Oryza , Chromosome Mapping , Oryza/genetics , Genome-Wide Association Study , Plant Breeding , Genomics , Gene Expression Profiling
5.
Crit Rev Biotechnol ; : 1-27, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453184

ABSTRACT

Natural fibers have garnered considerable attention owing to their desirable textile properties and advantageous effects on human health. Nevertheless, natural fibers lag behind synthetic fibers in terms of both quality and yield, as these attributes are largely genetically determined. In this article, a comprehensive overview of the natural and synthetic fiber production landscape over the last 10 years is presented, with a particular focus on the role of scientific breeding techniques in improving fiber quality traits in key crops like cotton, hemp, ramie, and flax. Additionally, the article delves into cutting-edge genomics-assisted breeding techniques, including QTL mapping, genome-wide association studies, transgenesis, and genome editing, and their potential role in enhancing fiber quality traits in these crops. A user-friendly compendium of 11226 available QTLs and significant marker-trait associations derived from 136 studies, associated with diverse fiber quality traits in these crops is furnished. Furthermore, the potential applications of transcriptomics in these pivotal crops, elucidating the distinct genes implicated in augmenting fiber quality attributes are investigated. Additionally, information on 11257 candidate/characterized or cloned genes sourced from various studies, emphasizing their key role in the development of high-quality fiber crops is collated. Additionally, the review sheds light on the current progress of marker-assisted selection for fiber quality traits in each crop, providing detailed insights into improved cultivars released for different fiber crops. In conclusion, it is asserted that the application of modern breeding tools holds tremendous potential in catalyzing a transformative shift in the textile industry.


Natural fibers possess desirable properties, but they often lag behind synthetic fibers in terms of both quality and quantity. Genomic-assisted breeding has the potential to improve fiber quality traits in cotton, hemp, ramie, and flax. Utilizing available QTLs, marker-trait associations, and candidate genes can contribute to the development of superior fiber crops, underscoring the significance of advanced breeding tools.

6.
Biochim Biophys Acta Gen Subj ; 1868(2): 130544, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104668

ABSTRACT

Epigenetic modifications act as conductors of inheritable alterations in gene expression, all while keeping the DNA sequence intact, thereby playing a pivotal role in shaping plant growth and development. This review article presents an overview of techniques employed to investigate and manipulate epigenetic diversity in crop plants, focusing on both naturally occurring and artificially induced epialleles. The significance of epigenetic modifications in facilitating adaptive responses is explored through the examination of how various biotic and abiotic stresses impact them. Further, environmental chemicals are explored for their role in inducing epigenetic changes, particularly focusing on inhibitors of DNA methylation like 5-AzaC and zebularine, as well as inhibitors of histone deacetylation including trichostatin A and sodium butyrate. The review delves into various approaches for generating epialleles, including tissue culture techniques, mutagenesis, and grafting, elucidating their potential to induce heritable epigenetic modifications in plants. In addition, the ground breaking CRISPR/Cas is emphasized for its accuracy in targeting specific epigenetic changes. This presents a potent tools for deciphering the intricacies of epigenetic mechanisms. Furthermore, the intricate relationship between epigenetic modifications and non-coding RNA expression, including siRNAs and miRNAs, is investigated. The emerging role of exo-RNAi in epigenetic regulation is also introduced, unveiling its promising potential for future applications. The article concludes by addressing the opportunities and challenges presented by these techniques, emphasizing their implications for crop improvement. Conclusively, this extensive review provides valuable insights into the intricate realm of epigenetic changes, illuminating their significance in phenotypic plasticity and their potential in advancing crop improvement.


Subject(s)
Epigenesis, Genetic , MicroRNAs , Epigenesis, Genetic/genetics , Plants , DNA Methylation , Mutagenesis , MicroRNAs/genetics
8.
PLoS One ; 18(10): e0292154, 2023.
Article in English | MEDLINE | ID: mdl-37862325

ABSTRACT

The work reported in present study deals with the development of a novel stochastic model and estimation of parameters to assess reliability characteristics for a turbogenerator unit of thermal power plant under classical and Bayesian frameworks. Turbogenerator unit consists of five components namely turbine lubrication, turbine governing, generator oil system, generator gas system and generator excitation system. The concepts of cold standby redundancy and Weibull distributed random variables are used in development of stochastic model. The shape parameter for all the random variables is same while scale parameter is different. Regenerative point technique and semi-Markov approach are used for evaluation of reliability characteristics. Sufficient repair facility always remains available in plant as well as repair done by the repairman is considered perfect. As the life testing experiments are time consuming, so to highlight the importance of proposed model Monte Carlo simulation study is carried out. A comparative analysis is done between true, classical and Bayesian results of MTSF, availability and profit function.


Subject(s)
Bayes Theorem , Reproducibility of Results , Computer Simulation , Monte Carlo Method
9.
Front Genet ; 14: 1248697, 2023.
Article in English | MEDLINE | ID: mdl-37609038

ABSTRACT

Maize serves as a crucial nutrient reservoir for a significant portion of the global population. However, to effectively address the growing world population's hidden hunger, it is essential to focus on two key aspects: biofortification of maize and improving its yield potential through advanced breeding techniques. Moreover, the coordination of multiple targets within a single breeding program poses a complex challenge. This study compiled mapping studies conducted over the past decade, identifying quantitative trait loci associated with grain quality and yield related traits in maize. Meta-QTL analysis of 2,974 QTLs for 169 component traits (associated with quality and yield related traits) revealed 68 MQTLs across different genetic backgrounds and environments. Most of these MQTLs were further validated using the data from genome-wide association studies (GWAS). Further, ten MQTLs, referred to as breeding-friendly MQTLs (BF-MQTLs), with a significant phenotypic variation explained over 10% and confidence interval less than 2 Mb, were shortlisted. BF-MQTLs were further used to identify potential candidate genes, including 59 genes encoding important proteins/products involved in essential metabolic pathways. Five BF-MQTLs associated with both quality and yield traits were also recommended to be utilized in future breeding programs. Synteny analysis with wheat and rice genomes revealed conserved regions across the genomes, indicating these hotspot regions as validated targets for developing biofortified, high-yielding maize varieties in future breeding programs. After validation, the identified candidate genes can also be utilized to effectively model the plant architecture and enhance desirable quality traits through various approaches such as marker-assisted breeding, genetic engineering, and genome editing.

10.
Front Plant Sci ; 14: 1107705, 2023.
Article in English | MEDLINE | ID: mdl-37528976

ABSTRACT

Grain protein content (GPC) is an important quality trait that effectively modulates end-use quality and nutritional characteristics of wheat flour-based food products. The Gpc-B1 gene is responsible for the higher protein content in wheat grain. In addition to higher GPC, the Gpc-B1 is also generally associated with reduced grain filling period which eventually causes the yield penalty in wheat. The main aim of the present study was to evaluate the effect of foliar application of potassium nitrate (PN) and salicylic acid (SA) on the physiological characteristics of a set of twelve genotypes, including nine isogenic wheat lines carrying the Gpc-B1 gene and three elite wheat varieties with no Gpc-B1 gene, grown at wheat experimental area of the Department of Plant Breeding and Genetics, PAU, Punjab, India. The PN application significantly increased the number of grains per spike (GPS) by 6.42 grains, number of days to maturity (DTM) by 1.03 days, 1000-grain weight (TGW) by 1.97 g and yield per plot (YPP) by 0.2 kg/plot. As a result of PN spray, the flag leaf chlorophyll content was significantly enhanced by 2.35 CCI at anthesis stage and by 1.96 CCI at 10 days after anthesis in all the tested genotypes. Furthermore, the PN application also significantly increased the flag leaf nitrogen content by an average of 0.52% at booting stage and by 0.35% at both anthesis and 10 days after anthesis in all the evaluated genotypes. In addition, the yellow peduncle colour at 30 days after anthesis was also increased by 19.08% while the straw nitrogen content was improved by 0.17% in all the genotypes. The preliminary experiment conducted using SA demonstrated a significant increase in DTM and other yield component traits. The DTM increased by an average of 2.31 days, GPS enhanced by approximately 3.17 grains, TGW improved by 1.13g, and YPP increased by 0.21 kg/plot. The foliar application of PN and SA had no significant effect on GPC itself. The findings of the present study suggests that applications of PN and SA can effectively mitigate the yield penalty associated with Gpc-B1 gene by extending grain filling period in the wheat.

11.
Plant Cell Rep ; 42(9): 1453-1472, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37338572

ABSTRACT

KEY MESSAGE: Genome-wide association study identified 205 significant marker-trait associations for chlorophyll fluorescence parameters in wheat. Candidate gene mining, in silico expression, and promoter analyses revealed the potential candidate genes associated with the studied parameters. The present study investigated the effect of varied sowing conditions (viz., early, timely, and late) on different chlorophyll fluorescence parameters in diverse wheat germplasm set comprising of 198 lines over two cropping seasons (2020-2021 and 2021-2022). Further, a genome-wide association study was conducted to identify potential genomic regions associated with these parameters. The results revealed significant impacts of sowing conditions on all fluorescence parameters, with the maximum and minimum effects on FI (26.64%) and FV/FM (2.12%), respectively. Among the 205 marker-trait associations (MTAs) identified, 11 high-confidence MTAs were chosen, exhibiting substantial effects on multiple fluorescence parameters, and each explaining more than 10% of the phenotypic variation. Through gene mining of genomic regions encompassing high-confidence MTAs, we identified a total of 626 unique gene models. In silico expression analysis revealed 42 genes with an expression value exceeding 2 TPM. Among them, 10 genes were identified as potential candidate genes with functional relevance to enhanced photosynthetic efficiency. These genes mainly encoded for the following important proteins/products-ankyrin repeat protein, 2Fe-2S ferredoxin-type iron-sulfur-binding domain, NADH-ubiquinone reductase complex-1 MLRQ subunit, oxidoreductase FAD/NAD(P)-binding, photosystem-I PsaF, and protein kinases. Promoter analysis revealed the presence of light-responsive (viz., GT1-motif, TCCC-motif, I-box, GT1-motif, TCT-motif, and SP-1) and stress-responsive (viz., ABRE, AuxRR-core, GARE-motif, and ARE) cis-regulatory elements, which may be involved in the regulation of identified putative candidate genes. Findings from this study could directly help wheat breeders in selecting lines with favorable alleles for chlorophyll fluorescence, while the identified markers will facilitate marker-assisted selection of potential genomic regions for improved photosynthesis.


Subject(s)
Genome-Wide Association Study , Triticum , Triticum/genetics , Phenotype , Genomics , Chlorophyll
12.
Plant Genome ; 16(3): e20342, 2023 09.
Article in English | MEDLINE | ID: mdl-37328945

ABSTRACT

A meta-analysis of quantitative trait loci (QTLs), associated with agronomic traits, fertility restoration, disease resistance, and seed quality traits was conducted for the first time in pigeonpea (Cajanus cajan L.). Data on 498 QTLs was collected from 9 linkage mapping studies (involving 21 biparental populations). Of these 498, 203 QTLs were projected onto "PigeonPea_ConsensusMap_2022," saturated with 10,522 markers, which resulted in the prediction of 34 meta-QTLs (MQTLs). The average confidence interval (CI) of these MQTLs (2.54 cM) was 3.37 times lower than the CI of the initial QTLs (8.56 cM). Of the 34 MQTLs, 12 high-confidence MQTLs with CI (≤5 cM) and a greater number of initial QTLs (≥5) were utilized to extract 2255 gene models, of which 105 were believed to be associated with different traits under study. Furthermore, eight of these MQTLs were observed to overlap with several marker-trait associations or significant SNPs identified in previous genome-wide association studies. Furthermore, synteny and ortho-MQTL analyses among pigeonpea and four related legumes crops, such as chickpea, pea, cowpea, and French bean, led to the identification of 117 orthologous genes from 20 MQTL regions. Markers associated with MQTLs can be employed for MQTL-assisted breeding as well as to improve the prediction accuracy of genomic selection in pigeonpea. Additionally, MQTLs may be subjected to fine mapping, and some of the promising candidate genes may serve as potential targets for positional cloning and functional analysis to elucidate the molecular mechanisms underlying the target traits.


Subject(s)
Cajanus , Quantitative Trait Loci , Cajanus/genetics , Genome-Wide Association Study , Disease Resistance/genetics , Plant Breeding , Seeds/genetics
13.
BMC Genomics ; 24(1): 259, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173660

ABSTRACT

BACKGROUND: Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, including disease resistance. RESULTS: Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confidence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized with marker-trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were expressed in wheat tissues at different phases of development. CONCLUSION: The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the following methods: gene cloning, reverse genetic methods, and omics approaches.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Triticum/microbiology , Bread , Plant Breeding , Quantitative Trait Loci , Chromosome Mapping , Disease Resistance/genetics , Basidiomycota/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
14.
PLoS One ; 18(5): e0284848, 2023.
Article in English | MEDLINE | ID: mdl-37141235

ABSTRACT

Metaheuristic techniques have been utilized extensively to predict industrial systems' optimum availability. This prediction phenomenon is known as the NP-hard problem. Though, most of the existing methods fail to attain the optimal solution due to several limitations like slow rate of convergence, weak computational speed, stuck in local optima, etc. Consequently, in the present study, an effort has been made to develop a novel mathematical model for power generating units assembled in sewage treatment plants. Markov birth-death process is adopted for model development and generation of Chapman-Kolmogorov differential-difference equations. The global solution is discovered using metaheuristic techniques, namely genetic algorithm and particle swarm optimization. All time-dependent random variables associated with failure rates are considered exponentially distributed, while repair rates follow the arbitrary distribution. The repair and switch devices are perfect and random variables are independent. The numerical results of system availability have been derived for different values of crossover, mutation, several generations, damping ratio, and population size to attain optimum value. The results were also shared with plant personnel. Statistical investigation of availability results justifies that particle swarm optimization outdoes genetic algorithm in predicting the availability of power-generating systems. In present study a Markov model is proposed and optimized for performance evaluation of sewage treatment plant. The developed model is one that can be useful for sewage treatment plant designers in establishing new plants and purposing maintenance policies. The same procedure of performance optimization can be adopted in other process industries too.


Subject(s)
Algorithms , Sewage , Models, Theoretical , Markov Chains , Mutation
15.
Physiol Mol Biol Plants ; 29(4): 525-542, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37187772

ABSTRACT

Meta-QTLs (MQTLs), ortho-MQTLs, and related candidate genes (CGs) for yield and its seven component traits evaluated under water deficit conditions were identified in wheat. For this purpose, a high density consensus map and 318 known QTLs were used for identification of 56 MQTLs. Confidence intervals (CIs) of the MQTLs were narrower (0.7-21 cM; mean = 5.95 cM) than the CIs of the known QTLs (0.4-66.6 cM; mean = 12.72 cM). Forty-seven MQTLs were co-located with marker trait associations reported in previous genome-wide association studies. Nine selected MQTLs were declared as 'breeders MQTLs' for use in marker-assisted breeding (MAB). Utilizing known MQTLs and synteny/collinearity among wheat, rice and maize, 12 ortho-MQTLs were also identified. A total of 1497 CGs underlying MQTLs were also identified, which were subjected to in-silico expression analysis, leading to identification of 64 differentially expressed CGs (DECGs) under normal and water deficit conditions. These DECGs encoded a variety of proteins, including the following: zinc finger, cytochrome P450, AP2/ERF domain-containing proteins, plant peroxidase, glycosyl transferase, glycoside hydrolase. The expression of 12 CGs at seedling stage (3 h stress) was validated using qRT-PCR in two wheat genotypes, namely Excalibur (drought tolerant) and PBW343 (drought sensitive). Nine of the 12 CGs were up-regulated and three down-regulated in Excalibur. The results of the present study should prove useful for MAB, for fine mapping of promising MQTLs and for cloning of genes across the three cereals studied. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01301-z.

16.
Front Plant Sci ; 14: 1166439, 2023.
Article in English | MEDLINE | ID: mdl-37251775

ABSTRACT

Understanding the genetic architecture of drought stress tolerance in bread wheat at seedling and reproductive stages is crucial for developing drought-tolerant varieties. In the present study, 192 diverse wheat genotypes, a subset from the Wheat Associated Mapping Initiative (WAMI) panel, were evaluated at the seedling stage in a hydroponics system for chlorophyll content (CL), shoot length (SLT), shoot weight (SWT), root length (RLT), and root weight (RWT) under both drought and optimum conditions. Following that, a genome-wide association study (GWAS) was carried out using the phenotypic data recorded during the hydroponics experiment as well as data available from previously conducted multi-location field trials under optimal and drought stress conditions. The panel had previously been genotyped using the Infinium iSelect 90K SNP array with 26,814 polymorphic markers. Using single as well as multi-locus models, GWAS identified 94 significant marker-trait associations (MTAs) or SNPs associated with traits recorded at the seedling stage and 451 for traits recorded at the reproductive stage. The significant SNPs included several novel, significant, and promising MTAs for different traits. The average LD decay distance for the whole genome was approximately 0.48 Mbp, ranging from 0.07 Mbp (chromosome 6D) to 4.14 Mbp (chromosome 2A). Furthermore, several promising SNPs revealed significant differences among haplotypes for traits such as RLT, RWT, SLT, SWT, and GY under drought stress. Functional annotation and in silico expression analysis revealed important putative candidate genes underlying the identified stable genomic regions such as protein kinases, O-methyltransferases, GroES-like superfamily proteins, NAD-dependent dehydratases, etc. The findings of the present study may be useful for improving yield potential, and stability under drought stress conditions.

17.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047112

ABSTRACT

Root system architecture (RSA), also known as root morphology, is critical in plant acquisition of soil resources, plant growth, and yield formation. Many QTLs associated with RSA or root traits in maize have been identified using several bi-parental populations, particularly in response to various environmental factors. In the present study, a meta-analysis of QTLs associated with root traits was performed in maize using 917 QTLs retrieved from 43 mapping studies published from 1998 to 2020. A total of 631 QTLs were projected onto a consensus map involving 19,714 markers, which led to the prediction of 68 meta-QTLs (MQTLs). Among these 68 MQTLs, 36 MQTLs were validated with the marker-trait associations available from previous genome-wide association studies for root traits. The use of comparative genomics approaches revealed several gene models conserved among the maize, sorghum, and rice genomes. Among the conserved genomic regions, the ortho-MQTL analysis uncovered 20 maize MQTLs syntenic to 27 rice MQTLs for root traits. Functional analysis of some high-confidence MQTL regions revealed 442 gene models, which were then subjected to in silico expression analysis, yielding 235 gene models with significant expression in various tissues. Furthermore, 16 known genes viz., DXS2, PHT, RTP1, TUA4, YUC3, YUC6, RTCS1, NSA1, EIN2, NHX1, CPPS4, BIGE1, RCP1, SKUS13, YUC5, and AW330564 associated with various root traits were present within or near the MQTL regions. These results could aid in QTL cloning and pyramiding in developing new maize varieties with specific root architecture for proper plant growth and development under optimum and abiotic stress conditions.


Subject(s)
Oryza , Zea mays , Chromosome Mapping/methods , Genome-Wide Association Study , Plant Breeding , Quantitative Trait Loci , Oryza/genetics
18.
Mol Biol Rep ; 50(4): 3787-3814, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36692674

ABSTRACT

Biotic stress is a critical factor limiting soybean growth and development. Soybean responses to biotic stresses such as insects, nematodes, fungal, bacterial, and viral pathogens are governed by complex regulatory and defense mechanisms. Next-generation sequencing has availed research techniques and strategies in genomics and post-genomics. This review summarizes the available information on marker resources, quantitative trait loci, and marker-trait associations involved in regulating biotic stress responses in soybean. We discuss the differential expression of related genes and proteins reported in different transcriptomics and proteomics studies and the role of signaling pathways and metabolites reported in metabolomic studies. Recent advances in omics technologies offer opportunities to reshape and improve biotic stress resistance in soybean by altering gene regulation and/or other regulatory networks. We suggest using 'integrated omics' to precisely understand how soybean responds to different biotic stresses. We also discuss the potential challenges of integrating multi-omics for the functional analysis of genes and their regulatory networks and the development of biotic stress-resistant cultivars. This review will help direct soybean breeding programs to develop resistance against different biotic stresses.


Subject(s)
Glycine max , Multiomics , Glycine max/genetics , Glycine max/metabolism , Plant Breeding , Genomics/methods , Stress, Physiological/genetics
19.
Front Genet ; 13: 1021180, 2022.
Article in English | MEDLINE | ID: mdl-36246648

ABSTRACT

A meta-analysis of QTLs associated with grain protein content (GPC) was conducted in hexaploid and tetraploid wheat to identify robust and stable meta-QTLs (MQTLs). For this purpose, as many as 459 GPC-related QTLs retrieved from 48 linkage-based QTL mapping studies were projected onto the newly developed wheat consensus map. The analysis resulted in the prediction of 57 MQTLs and 7 QTL hotspots located on all wheat chromosomes (except chromosomes 1D and 4D) and the average confidence interval reduced 2.71-fold in the MQTLs and QTL hotspots compared to the initial QTLs. The physical regions occupied by the MQTLs ranged from 140 bp to 224.02 Mb with an average of 15.2 Mb, whereas the physical regions occupied by QTL hotspots ranged from 1.81 Mb to 36.03 Mb with a mean of 8.82 Mb. Nineteen MQTLs and two QTL hotspots were also found to be co-localized with 45 significant SNPs identified in 16 previously published genome-wide association studies in wheat. Candidate gene (CG) investigation within some selected MQTLs led to the identification of 705 gene models which also included 96 high-confidence CGs showing significant expressions in different grain-related tissues and having probable roles in GPC regulation. These significantly expressed CGs mainly involved the genes/gene families encoding for the following proteins: aminotransferases, early nodulin 93, glutamine synthetases, invertase/pectin methylesterase inhibitors, protein BIG GRAIN 1-like, cytochrome P450, glycosyl transferases, hexokinases, small GTPases, UDP-glucuronosyl/UDP-glucosyltransferases, and EamA, SANT/Myb, GNAT, thioredoxin, phytocyanin, and homeobox domains containing proteins. Further, eight genes including GPC-B1, Glu-B1-1b, Glu-1By9, TaBiP1, GSr, TaNAC019-A, TaNAC019-D, and bZIP-TF SPA already known to be associated with GPC were also detected within some of the MQTL regions confirming the efficacy of MQTLs predicted during the current study.

20.
Front Genet ; 13: 1001904, 2022.
Article in English | MEDLINE | ID: mdl-36160017

ABSTRACT

The high performance and stability of wheat genotypes for yield, grain protein content (GPC), and other desirable traits are critical for varietal development and food and nutritional security. Likewise, the genotype by environment (G × E) interaction (GEI) should be thoroughly investigated and favorably utilized whenever genotype selection decisions are made. The present study was planned with the following two major objectives: 1) determination of GEI for some advanced wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab, India; and 2) selection of the best genotypes with high GPC and yield in various environments. Different univariate [Eberhart and Ruessll's models; Perkins and Jinks' models; Wrike's Ecovalence; and Francis and Kannenberg's models], multivariate (AMMI and GGE biplot), and correlation analyses were used to interpret the data from the multi-environmental trial (MET). Consequently, both the univariate and multivariate analyses provided almost similar results regarding the top-performing and stable genotypes. The analysis of variance revealed that variation due to environment, genotype, and GEI was highly significant at the 0.01 and 0.001 levels of significance for all studied traits. The days to flowering, plant height, spikelets per spike, grain per spike, days to maturity, and 1000-grain weight were specifically affected by the environment, whereas yield was mainly affected by the environment and GEI. Genotypes, on the other hand, had a greater impact on the GPC than environmental conditions. As a result, a multi-environmental investigation was necessary to identify the GEI for wheat genotype selection because the GEI was very significant for all of the evaluated traits. Yield, 1000-grain weight, spikelet per spike, and days to maturity were observed to have positive correlations, implying the feasibility of their simultaneous selection for yield enhancement. However, GPC was observed to have a negative correlation with yield. Patiala was found to be the most discriminating environment for both yield and GPC and also the most effective representative environment for GPC, whereas Ludhiana was found to be the most effective representative environment for yield. Eventually, two NILs (BWL7508, and BWL7511) were selected as the top across all environments for both yield and GPC.

SELECTION OF CITATIONS
SEARCH DETAIL
...