Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Sci Rep ; 12(1): 18351, 2022 11 01.
Article En | MEDLINE | ID: mdl-36319690

Based on our continuous effort to investigate chemistry and biology of the plant secondary metabolites, we were able to isolate a glycosidal flavonoid 1 from the Wild Egyptian Artichoke. The activity of dihydromyricetin 3-O-rhamnoside (sin. dihydromyricitrin, ampelopsin 3-O-rhamnoside) (1) against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE); its absolute configuration using X-ray crystallography were determined for the first time. Inhibitory activity of 1 against AChE and BChE enzymes were determined using a slightly modified version of Ellman's method. Compound 1 was revealed to have a potent inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 0.070 ± 0.008 and 0.071 ± 0.004 mM, respectively, where IC50 values of the reference drug (galanthamine) were 0.023 ± 0.15 and 0.047 ± 0.91 mM. Compound 1 could be a promising molecule against Alzheimer's disease.


Butyrylcholinesterase , Cholinesterase Inhibitors , Cholinesterase Inhibitors/pharmacology , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , X-Rays , Antioxidants/pharmacology , Structure-Activity Relationship
2.
Chem Biodivers ; 19(12): e202200315, 2022 Dec.
Article En | MEDLINE | ID: mdl-36282001

Series of synthetic coumarin derivatives (1-16) were tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), two enzymes linked to the pathology of Alzheimer's disease (AD). Compound 16 was the most active AChE inhibitor with IC50 32.23±2.91 µM, while the reference (galantamine) had IC50 =1.85±0.12 µM. Compounds 9 (IC50 75.14±1.82 µM), 13 (IC50 =16.14±0.43 µM), were determined to be stronger BChE inhibitors than the reference galantamine (IC50 =93.53±2.23 µM). The IC50 value of compound 16 for BChE inhibition (IC50 =126.56±11.96 µM) was slightly higher than galantamine. The atomic interactions between the ligands and the key amino acids inside the binding cavities were simulated to determine their ligand-binding positions and free energies. The three inhibitory coumarins (9, 13, 16) were next tested for their effects on the genes associated with AD using human neuroblastoma (SH-SY5Y) cell lines. Our data indicate that they could be considered for further evaluation as new anti-Alzheimer drug candidates.


Alzheimer Disease , Neuroblastoma , Humans , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Galantamine , Coumarins/pharmacology , Coumarins/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Alzheimer Disease/drug therapy , Molecular Docking Simulation , Structure-Activity Relationship
3.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 04.
Article En | MEDLINE | ID: mdl-35215310

3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is a key enzyme involved in cholesterol biosynthesis and one of the most important targets for the treatment of hypercholesterolemia. A limited number of studies on the HMG-CoA reductase inhibitory potential of natural products are available. Thus, in the current study, we aimed to test the HMG-CoA reductase inhibitory capacity of extracts from the roots and aerial parts of Salvia multicaulis Vahl., through activity-guided isolation. Our findings revealed that the root extract prepared with dichloromethane-acetone (1:1) showed the highest inhibition (71.97 ± 0.37%) at 100 µg/mL. The extract was then initially fractionated by column chromatography and the obtained fractions were monitored by thin layer chromatography. Fractions which were similar to each other were combined and a total of 15 fractions were obtained. Further conventional chromatographic studies were carried out on the active fractions. Based on these fractions, 10 known compounds, comprising 9 terpenes and 1 steroid derivative in total, were isolated and their structures were verified by a combination of IT-TOF-MS, and 1D and 2D NMR techniques. According to the enzyme inhibition data of the identified compounds, 7-acetoxyhorminone exerted the highest inhibition (84.15 ± 0.10%, IC50 = 63.6 ± 1.21 µg/mL). The molecular docking experiments on 7-acetoxyhorminone and horminone indicated that both compounds strongly bind to the active site of the enzyme.

4.
Food Chem ; 368: 130775, 2022 Jan 30.
Article En | MEDLINE | ID: mdl-34399175

The ethanol extracts of five Origanum species: O. majorana L., O. onites L., O. syriacum L., O. vulgare subsp. hirtum (Link) Ietsw., and O. vulgare subsp. viride (Boiss.) Hayek, collected annually (each month), were investigated for their cholinesterase inhibition and antioxidant effects. The phytochemical composition of a total of 60 extracts was assessed by HPLC-DAD-ESI/HRMS, revealing the presence of a total of 73 compounds. Possible correlation between the bioactivity and metabolite profiles during 12 months was monitored. Acetylcholinesterase (AChE) inhibitory activity was found to be the highest between April and November (50.29-75.95%, 200 µg/mL), while the highest inhibition towards butyrylcholinesterase (BChE) was observed for the extracts between April and October (71.68-88.97%). Aromadendrin showed good correlation with anti-AChE, anti-BChE and reducing power activities. Furthermore, molecular docking data with aromadendrin, caffeoylarbutin and eriodictyol indicated that caffeoylarbutin had the lowest binding energy against both enzymes.


Origanum , Acetylcholinesterase , Antioxidants , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Phytochemicals , Plant Extracts
5.
Anal Chem ; 93(49): 16417-16424, 2021 12 14.
Article En | MEDLINE | ID: mdl-34860510

Nonlinear programming has found useful applications in protein biophysics to help understand the microscopic exchange kinetics of data obtained using hydrogen-deuterium exchange mass spectrometry (HDX-MS). Finding a microscopic kinetic solution for HDX-MS data provides a window into local protein stability and energetics allowing them to be quantified and understood. Optimization of HDX-MS data is a significant challenge, however, due to the requirement to solve a large number of variables simultaneously with exceptionally large variable bounds. Modeled rates are frequently uncertain with an explicate dependency on the initial guess values. In order to enhance the search for a minimum solution in HDX-MS optimization, the ability of selected constrained variables to propagate throughout the data is considered. We reveal that locally bound constrained optimization induces a global effect on all variables. The global response to local constraints is large and surprisingly long-range, but the outcome is unpredictable, unexpectedly decreasing the overall accuracy of certain data sets depending on the stringency of the constraints. Utilizing previously described in-house validation criteria based on covariance matrices, a method is described that is able to accurately determine whether constraints benefit or impair the optimization of HDX-MS data. From this, we establish a new two-stage method for our online optimizer HDXmodeller that can effectively leverage locally bound variables to enhance HDX-MS data modeling.


Hydrogen Deuterium Exchange-Mass Spectrometry , Biophysics , Uncertainty
6.
Anal Chem ; 93(19): 7323-7331, 2021 05 18.
Article En | MEDLINE | ID: mdl-33961396

Quantification of hydrogen deuterium exchange (HDX) kinetics can provide information on the stability of individual amino acids in proteins by finding the degree to which the local backbone environment corresponds to that of a random coil. When characterized by mass spectrometry, extraction of HDX kinetics is not possible because different residue exchange rates become merged depending on the peptides that are formed during proteolytic digestion. We have recently developed an advanced programming tool called HDXmodeller, which enables the exchange rates of individual amino acids to be understood by optimization of low-resolution HDX-mass spectrometry (MS) data. HDXmodeller is also uniquely able to appraise each optimization and quantify the accuracy of modeled exchange rates ab initio using a novel autovalidation method based on a covariance matrix. Here, we address the noise-handling capabilities of HDXmodeller and demonstrate the effectiveness of the algorithm on self-inconsistent datasets. Reference intervals for experimental HDX-MS data are also derived, and this information is presented in an updated online workflow for HDXmodeller, allowing users to evaluate the consistency of their data. The development of a modified version of HDXmodeller is also discussed with enhanced noise-handling capability brought about through loss function optimization. Changes in optimizer accuracy with different loss functions are also demonstrated along with the effectiveness of HDXmodeller to select the most effective optimizer for different data using currently embedded autovalidation criteria.


Deuterium Exchange Measurement , Hydrogen Deuterium Exchange-Mass Spectrometry , Mass Spectrometry , Peptides , Proteins
7.
Commun Biol ; 4(1): 199, 2021 02 15.
Article En | MEDLINE | ID: mdl-33589746

The extent to which proteins are protected from hydrogen deuterium exchange (HDX) provides valuable insight into their folding, dynamics and interactions. Characterised by mass spectrometry (MS), HDX benefits from negligible mass restrictions and exceptional throughput and sensitivity but at the expense of resolution. Exchange mechanisms which naturally transpire for individual residues cannot be accurately located or understood because amino acids are characterised in differently sized groups depending on the extent of proteolytic digestion. Here we report HDXmodeller, the world's first online webserver for high-resolution HDX-MS. HDXmodeller accepts low-resolution HDX-MS input data and returns high-resolution exchange rates quantified for each residue. Crucially, HDXmodeller also returns a set of unique statistics that can correctly validate exchange rate models to an accuracy of 99%. Remarkably, these statistics are derived without any prior knowledge of the individual exchange rates and facilitate unparallel user confidence and the capacity to evaluate different data optimisation strategies.


Hydrogen Deuterium Exchange-Mass Spectrometry , Internet , Proteins/metabolism , Animals , Automation, Laboratory , High-Throughput Nucleotide Sequencing , Humans , Protein Binding , Protein Folding , Proteins/chemistry , Proteolysis , Reproducibility of Results
8.
Neurosci Lett ; 700: 30-37, 2019 05 01.
Article En | MEDLINE | ID: mdl-29684528

G Protein-Coupled Receptors (GPCRs) can form homo- and heterodimers or constitute higher oligomeric clusters with other heptahelical GPCRs. In this article, multiscale molecular modeling approaches as well as experimental techniques which are used to study oligomerization of GPCRs are reviewed. In particular, the effect of dimerization/oligomerization to the ligand binding affinity of individual protomers and also on the efficacy of the oligomer are discussed by including diverse examples from the literature. In addition, possible allosteric effects that may emerge upon interaction of GPCRs with membrane components, like cholesterol, is also discussed. Investigation of these above-mentioned interactions may greatly contribute to the candidate molecule screening studies and development of novel therapeutics with fewer adverse effects.


Receptors, G-Protein-Coupled/chemistry , Allosteric Regulation , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Brain/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cholesterol/chemistry , Humans , Hypertension/metabolism , Ligands , Models, Molecular , Protein Binding , Protein Conformation , Protein Multimerization , Receptor, Angiotensin, Type 1/chemistry , Receptor, Angiotensin, Type 1/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Receptors, G-Protein-Coupled/metabolism , Renin-Angiotensin System
9.
Bioorg Chem ; 84: 355-362, 2019 03.
Article En | MEDLINE | ID: mdl-30530106

Coumarins of synthetic or natural origins are an important chemical class exerting diverse pharmacological activities. In the present study, 26 novel O-alkylcoumarin derivatives were synthesized and have been tested at 100 µM for their in vitro inhibitory potential against acetylcholinesterase (AChE) and butyrlcholinesterase (BChE) targets which are the key enzymes playing role in the pathogenesis of Alzheimer's disease. Among the tested coumarins, none of them could inhibit AChE, whereas 12 of them exerted a marked and selective inhibition against BChE as compared to the reference (galanthamine, IC50 = 46.58 ±â€¯0.91 µM). In fact, 10 of the active coumarins showed higher inhibition (IC50 = 7.01 ±â€¯0.28 µM - 43.31 ±â€¯3.63 µM) than that of galanthamine. The most active ones were revealed to be 7-styryloxycoumarin (IC50 = 7.01 ±â€¯0.28 µM) and 7-isopentenyloxy-4-methylcoumarin (IC50 = 8.18 ±â€¯0.74 µM). In addition to the in vitro tests, MetaCore/MetaDrug binary QSAR models and docking simulations were applied to evaluate the active compounds by ligand-based and target-driven approaches. The predicted pharmacokinetic profiles of the compounds suggested that the compounds reveal lipophilic character and permeate blood brain barrier (BBB) and the ADME models predict higher human serum protein binding percentages (>50%) for the compounds. The calculated docking scores indicated that the coumarins showing remarkable BChE inhibition possessed favorable free binding energies in interacting with the ligand-binding domain of the target. Therefore, our results disclose that O-alkylcoumarins are promising selective inhibitors of cholinesterase enzymes, particularly BChE in our case, which definitely deserve further studies.


Acetylcholinesterase/chemistry , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Coumarins/chemistry , Acetylcholinesterase/metabolism , Binding Sites , Blood-Brain Barrier , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/metabolism , Coumarins/metabolism , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Binding , Quantitative Structure-Activity Relationship
10.
J Mol Graph Model ; 85: 122-129, 2018 10.
Article En | MEDLINE | ID: mdl-30176384

Appropriate therapeutic solutions against Staphylococcal infections are currently limited. To work out the complex task of challenging drug resistance in Staphylococcus aureus, new compounds with novel modes of action are required. In this study, we performed target-driven virtual screening to filter exhaustive phytochemical libraries that can inhibit the activity of S. aureus DNA Gyrase B (Gyr B). Three top-ranked hit molecules (Mangostenone E, Candenatenin A and 2,4,4'-trihydroxydihydrochalcone) were identified from comprehensive molecular docking studies based on their strong spatial affinity with key catalytic residues of the binding pocket of DNA GyrB, especially with the well-known crucial residue Asp81. Molecular dynamics (MD) simulations were performed for these identified hit molecules for better understanding of their dynamical and structural profiles throughout the MD simulations. These compounds can be explored as future lead optimization molecules to discover a new class of antibiotics against resistant Staphylococcus aureus strains.


Antineoplastic Agents/chemistry , DNA Gyrase/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Staphylococcus aureus/enzymology , Antineoplastic Agents/pharmacology , Binding Sites , Drug Resistance, Bacterial , Ligands , Protein Binding , Quantitative Structure-Activity Relationship , Staphylococcus aureus/drug effects
11.
Phytomedicine ; 42: 25-33, 2018 Mar 15.
Article En | MEDLINE | ID: mdl-29655693

BACKGROUND: Many natural products, particularly phenolic compounds, have been reported to have a strong inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the key enzymes in the pathology of Alzheimer's disease (AD). HYPOTHESIS: Therefore, we hypothesized that some xanthahumol, naringenin, and acyl phloroglucinol derivatives (1-14) isolated from Humulus lupulus L. (hops) may have an inhibitory potential against AChE and BChE. METHODS: Inhibitory potential of compounds 1-14 were tested against AChE and BChE using ELISA microtiter assay. Different molecular docking simulations, including IFD and GOLD protocols, were implemented to verify the interactions between the ligands and the active site amino acids and also their binding energies inside the catalytic crevices of AChE and BChE. ADME/Tox analysis were used to determine pharmacological activities of the compounds. RESULTS: Among them, 3­hydroxy­xanthohumol (IC50 = 51.25 ±â€¯0.88 µM) and xanthohumol (IC50 = 71.34 ±â€¯2.09 µM), displayed a moderate AChE inhibition in comparison to that of the reference (galanthamine, IC50 = 2.52 ±â€¯0.15 µM). In addition to 3­hydroxy­xanthohumol (IC50 = 63.07 ±â€¯3.76 µM) and xanthohumol (IC50 = 32.67 ±â€¯2.82 µM), 8-prenylnaringenin (IC50 = 86.58 ±â€¯3.74 µM) also showed micromolar-range inhibition against BChE (galanthamine, IC50 = 46.58 ±â€¯0.91 µM). Rest of the compounds were found to be either inactive or having inhibition below 50%. Prediction of pharmacokinetic studies suggested that all the ligands revealed acceptable drug-like profiles. Docking simulations demonstrate not only the prediction of ligand binding energies of the compounds inside the catalytic domains of the targets, but also highlight the critical amino acids contributing to stabilizations of the ligands. CONCLUSION: Our findings revealed that xanthohumol in particular could be considered as lead molecule to explore new cholinesterase inhibitors for AD.


Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Flavanones/pharmacology , Flavonoids/pharmacology , Humulus/chemistry , Propiophenones/pharmacology , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Drug Evaluation, Preclinical/methods , Flavanones/chemistry , Flavonoids/chemistry , Humans , Molecular Docking Simulation , Phloroglucinol/chemistry , Propiophenones/chemistry , Structure-Activity Relationship
12.
J Chem Inf Model ; 58(4): 826-836, 2018 04 23.
Article En | MEDLINE | ID: mdl-29537837

The active (D2HighR) and inactive (D2LowR) states of dimeric dopamine D2 receptor (D2R) models were investigated to clarify the binding mechanisms of the dopamine agonist bromocriptine, using Molecular Dynamics (MD) simulation. The aim of this comprehensive study was to investigate the critical effects of bromocriptine binding on each distinct receptor conformation. The different binding modes of the bromocriptine ligand in the active and inactive states have a significant effect on the conformational changes of the receptor. Based on the MM/GBSA approach, the calculated binding enthalpies of bromocriptine demonstrated selectivity toward the D2HighR active state. There is good agreement between the calculated and experimentally measured D2HighR selectivity. In the ligand-binding site, the key amino acids identified for D2HighR were Asp114(3.32) and Glu95(2.65), and for D2LowR, it was Ser193(5.42). Moreover, analysis of replicate MD trajectories demonstrated that the bromocriptine structure was more rigid at the D2HighR state and more flexible at the D2LowR state. However, the side chains of the ligand-receptor complex of D2HighR showed larger variations relative to the corresponding regions of D2LowR. The present study is part of an ongoing research program to study D2R conformational changes during ligand activation and to evaluate the conformational state selectivity for ligand binding.


Bromocriptine/chemistry , Bromocriptine/metabolism , Dopamine Agonists/chemistry , Dopamine Agonists/metabolism , Protein Multimerization/drug effects , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Bromocriptine/pharmacology , Dopamine Agonists/pharmacology , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Quaternary , Thermodynamics
13.
J Mol Graph Model ; 79: 103-117, 2018 01.
Article En | MEDLINE | ID: mdl-29156380

Angiotensin II receptor type 1 (AT1) antagonists are the most recent drug class against hypertension. Recently first crystal structure of AT1 receptor is deposited to the protein data bank (PDB ID: 4YAY). In this work, several molecular screening methods such as molecular docking and de novo design studies were performed and it is found that oxazolone and imidazolone derivatives reveal similar/better interaction energy profiles compared to the FDA approved sartan molecules at the binding site of the AT1 receptor. A database consisting of 3500-fragments were used to enumerate de novo designed imidazolone and oxazolone derivatives and hereby more than 50000 novel small molecules were generated. These derivatives were then used in high throughput virtual screening simulations (Glide/HTVS) to find potent hit molecules. In addition, virtual screening of around 18 million small drug-like compounds from ZINC database were screened at the binding pocket of the AT1 receptor via Glide/HTVS method. Filtered structures were then used in more sophisticated molecular docking simulations protocols (i.e., Glide/SP; Glide/XP; Glide/IFD; Glide/QPLD, and GOLD). However, the K+ ion channel/drug interactions should also be considered in studies implemented in molecular level against their cardiovascular risks. Thus, selected compounds with high docking scores via all diverse docking algorithms are also screened at the pore domain regions of human ether-a-go-go-related gene (hERG1) K+ channel to remove the high affinity hERG1 blocking compounds. High docking scored compounds at the AT1 with low hERG1 affinity is considered for long molecular dynamics (MD) simulations. Post-processing analysis of MD simulations assisted for better understanding of molecular mechanism of studied compounds at the binding cavity of AT1 receptor. Results of this study can be useful for designing of novel and safe AT1 inhibitors.


Antihypertensive Agents/chemistry , Drug Design , ERG1 Potassium Channel/chemistry , Imidazoles/chemistry , Quantitative Structure-Activity Relationship , Antihypertensive Agents/pharmacology , Binding Sites , ERG1 Potassium Channel/antagonists & inhibitors , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Imidazoles/pharmacology , Ligands , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Multimerization
14.
J Mol Graph Model ; 79: 88-102, 2018 01.
Article En | MEDLINE | ID: mdl-29156382

Dengue virus is a major issue of tropical and sub-tropical regions. The proliferation of virus results in immense number of deaths each year because of unavailability of on-shelf drugs. This issue necessitates the design of novel anti-Dengue drugs. The protease enzyme pathway is the critical target for drug design due to its significance in the replication, survival and other cellular activities of Dengue virus. Keeping in mind the worsening situation regarding Dengue virus, approximately eighteen million drug-like compounds from the ZINC small molecule database have been screened against Nonstructural Protein 3 (NS3) previously by our group. In this study, in order to investigate the effect of extended time of molecular dynamics (MD) simulations on structural and dynamical profiles of used complexes, simulation run time is increased from 50-ns to 100-ns for the each system. In addition, a well-known Dengue virus inhibitor (MB21) from literature is used as reference structure (positive control) to compare the proposed molecules. Post-processing MD analyses including Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculations were conducted to predict binding free energies of inhibitors from derived trajectory frames of MD simulations. Identified compounds are further directed to Quantum-Polarized Ligand Docking (QPLD), molecular fingerprint-based virtual screening of another small molecule database (Otava Drug Like small molecule database), and Structure-based Pharmacophore Modeling (E-Pharmacophore). Finally, cell proliferation and cytotoxicity tests as well as pre- and post-treatment on HUH7 cells infected with DENV2 NGC strain are applied for four identified hit molecules (ZINC36681949, ZINC44921800, ZINC95518765 and ZINC39500661) to check whether these drugs inhibit DENV2 from entry and/or exit pathways. Based on cell-based Dengue quantification assays, there is no effect seen on pre-treatment of cells with these compounds indicating that the early infection processes of virus is not affected. In contrast, the post-treatment of cells with these compounds after Dengue virus infection has resulted in a significant 1 log PFU/ml reduction of the virus infectious titre.


Antiviral Agents/chemistry , Drug Discovery/methods , Molecular Docking Simulation , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Drug Design , Drug Evaluation, Preclinical , Humans , Hydrogen Bonding , Molecular Conformation , Small Molecule Libraries , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry
15.
J Mol Graph Model ; 77: 338, 2017 10.
Article En | MEDLINE | ID: mdl-28957754

Dengue virus is a major issue of tropical and sub-tropical regions. The proliferation of virus results in immense number of deaths each year because of unavailability of on-shelf drugs. This issue necessitates the design of novel anti-Dengue drugs. The protease enzyme pathway is the critical target for drug design due to its significance in the replication, survival and other cellular activities of Dengue virus. Keeping in mind the worsening situation regarding Dengue virus, approximately eighteen million drug-like compounds from the ZINC small molecule database have been screened against Nonstructural Protein 3 (NS3) previously by our group. In this study, in order to investigate the effect of extended time of molecular dynamics (MD) simulations on structural and dynamical profiles of used complexes, simulation run time is increased from 50-ns to 100-ns for the each system. In addition, a well-known Dengue virus inhibitor (MB21) from literature is used as reference structure (positive control) to compare the proposed molecules. Post-processing MD analyses including Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculations were conducted to predict binding free energies of inhibitors from derived trajectory frames of MD simulations. Identified compounds are further directed to Quantum-Polarized Ligand Docking (QPLD), molecular fingerprint-based virtual screening of another small molecule database (Otava Drug Like small molecule database), and Structure-based Pharmacophore Modeling (E-Pharmacophore). Finally, cell proliferation and cytotoxicity tests as well as pre- and post-treatment on HUH7 cells infected with DENV2 NGC strain are applied for four identified hit molecules (ZINC36681949, ZINC44921800, ZINC95518765 and ZINC39500661) to check whether these drugs inhibit DENV2 from entry and/or exit pathways. Based on cell-based Dengue quantification assays, there is no effect seen on pre-treatment of cells with these compounds indicating that the early infection processes of virus is not affected. In contrast, the post-treatment of cells with these compounds after Dengue virus infection has resulted in a significant 1logPFU/ml reduction of the virus infectious titre.

16.
J Mol Graph Model ; 77: 240-249, 2017 10.
Article En | MEDLINE | ID: mdl-28957753

Angiotensin II receptor type 1 (AT1) antagonists are the most recent drug class against hypertension. Recently first crystal structure of AT1 receptor is deposited to the protein data bank (PDB ID: 4YAY). In this work, several molecular screening methods such as molecular docking and de novo design studies were performed and it is found that oxazolone and imidazolone derivatives reveal similar/better interaction energy profiles compared to the FDA approved sartan molecules at the binding site of the AT1 receptor. A database consisting of 3500-fragments were used to enumerate de novo designed imidazolone and oxazolone derivatives and hereby more than 50000 novel small molecules were generated. These derivatives were then used in high throughput virtual screening simulations (Glide/HTVS) to find potent hit molecules. In addition, virtual screening of around 18 million small drug-like compounds from ZINC database were screened at the binding pocket of the AT1 receptor via Glide/HTVS method. Filtered structures were then used in more sophisticated molecular docking simulations protocols (i.e., Glide/SP; Glide/XP; Glide/IFD; Glide/QPLD, and GOLD). However, the K+ ion channel/drug interactions should also be considered in studies implemented in molecular level against their cardiovascular risks. Thus, selected compounds with high docking scores via all diverse docking algorithms are also screened at the pore domain regions of human ether-a-go-go-related gene (hERG1) K+ channel to remove the high affinity hERG1 blocking compounds. High docking scored compounds at the AT1 with low hERG1 affinity is considered for long molecular dynamics (MD) simulations. Post-processing analysis of MD simulations assisted for better understanding of molecular mechanism of studied compounds at the binding cavity of AT1 receptor. Results of this study can be useful for designing of novel and safe AT1 inhibitors.

17.
Bioorg Chem ; 74: 238-250, 2017 10.
Article En | MEDLINE | ID: mdl-28866249

In this study, a series of novel ß-benzylphenethylamines and their sulfamide derivatives were synthesized starting from (Z)-2,3-diphenylacrylonitriles. Pd-C catalysed hydrogenation of diphenylacrylonitriles, reduction of propanenitriles with LiAlH4 in the presence of AlCl3 followed by addition of conc. HCl afforded ß-benzylphenethylamine hydrochloride salts. The reactions of these amine hydrochloride salts with chlorosulfonyl isocyanate (CSI) in the presence of tert-BuOH and excess Et3N gave sulfamoylcarbamates. Removing of Boc group from the synthesized sulfamoylcarbamates with trifluoroacetic acid (TFA) yielded novel sulfamides in good yields. These novel sulfamides derived from ß-benzylphenethylamines were effective inhibitors of the cytosolic carbonic anhydrase I and II isoenzymes (hCA I and II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with Ki values in the range of 0.278-2.260nM for hCA I, 0.187-1.478nM for hCA II, 0.127-2.452nM for AChE and 0.494-1.790nM for BChE. The inhibitory effects of the synthesized novel sulfamides derived from ß-benzylphenethylamines were compared to those of acetazolamide and dorzolamide as clinical hCA I and II isoenzymes inhibitors and tacrine as a clinical AChE and BChE enzymes inhibitors. In addition to in vitro tests, molecular modeling approaches are implemented not only for prediction of the binding affinities of the compounds but also to study their inhibition mechanisms in atomic level at the catalytic domains.


Benzyl Compounds/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Cholinesterase Inhibitors/pharmacology , Ethylamines/pharmacology , Sulfonamides/pharmacology , Acetylcholinesterase/metabolism , Benzyl Compounds/chemistry , Butyrylcholinesterase/metabolism , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Ethylamines/chemistry , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
18.
Cell Biochem Funct ; 35(6): 304-314, 2017 Aug.
Article En | MEDLINE | ID: mdl-28833317

The objective of this study was to evaluate the antioxidant effects of propolis, caffeic acid phenethyl ester (CAPE; active compound in propolis), and pollen on biochemical oxidative stress biomarkers in rat kidney tissue inhibited by Nω -nitro-L-arginine methyl ester (L-NAME). The biomarkers evaluated were paraoxonase (PON1), oxidative stress index (OSI), total antioxidant status (TAS), total oxidant status (TOS), asymmetric dimethylarginine (ADMA), and nuclear factor kappa B (NF-κB). TAS levels and PON1 activity were significantly decreased in kidney tissue samples in the L-NAME-treated group (P < 0.05). The levels of TAS and PONI were higher in the L-NAME plus propolis, CAPE, and pollen groups compared with the L-NAME-treated group. TOS, ADMA, and NF-κB levels were significantly increased in the kidney tissue samples of the L-NAME-treated group (P < 0.05). However, these parameters were significantly lower in the L-NAME plus propolis, CAPE, and pollen groups (P < 0.05) compared with rats administered L-NAME alone (P < 0.05). Furthermore, the binding energy of CAPE within catalytic domain of glutathione reductase (GR) enzyme as well as its inhibitory mechanism was determined using molecular modeling approaches. In conclusion, experimental and theoretical data suggested that oxidative alterations occurring in the kidney tissue of chronic hypertensive rats may be prevented via active compound of propolis, CAPE administration.


Caffeic Acids/pharmacology , Kidney Diseases/etiology , Molecular Dynamics Simulation , Oxidative Stress/drug effects , Phenylethyl Alcohol/analogs & derivatives , Propolis/pharmacology , Animals , Antioxidants , Arginine/analogs & derivatives , Arginine/metabolism , Arginine/toxicity , Aryldialkylphosphatase/metabolism , Binding Sites , Caffeic Acids/chemistry , Caffeic Acids/metabolism , Glutathione Reductase/chemistry , Glutathione Reductase/metabolism , Half-Life , Hypertension/metabolism , Hypertension/pathology , Kidney Diseases/metabolism , Male , Molecular Docking Simulation , NF-kappa B/metabolism , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/pharmacology , Pollen/chemistry , Pollen/metabolism , Propolis/metabolism , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley
19.
J Mol Graph Model ; 74: 153-170, 2017 06.
Article En | MEDLINE | ID: mdl-28499268

The intra-cavitary drug blockade of hERG1 channel has been extensively studied, both experimentally and theoretically. Structurally diverse ligands inadvertently block the hERG1 K+ channel currents lead to drug induced Long QT Syndrome (LQTS). Accordingly, designing either hERG1 channel openers or current activators, with the potential to target other binding pockets of the channel, has been introduced as a viable approach in modern anti-arrhythmia drug development. However, reports and investigations on the molecular mechanisms underlying activators binding to the hERG1 channel remain sparse and the overall molecular design principles are largely unknown. Most of the hERG1 activators were discovered during mandatory screening for hERG1 blockade. To fill this apparent deficit, the first universal pharmacophore model for hERG1 K+ channel activators was developed using PHASE. 3D structures of 18 hERG1 K+ channel activators and their corresponding measured binding affinity values were used in the development of pharmacophore models. These compounds spanned a range of structurally different chemotypes with moderate variation in binding affinity. A five sites AAHRR (A, hydrogen-bond accepting, H, hydrophobic, R, aromatic) pharmacophore model has shown reasonable high statistical results compared to the other developed more than 1000 hypotheses. This model was used to construct steric and electrostatic contour maps. The predictive power of the model was tested with 3 external test set compounds as true unknowns. Finally, the pharmacophore model was combined with the previously developed receptor-based model of hERG1 K+ channel to develop and screen novel activators. The results are quite striking and it suggests a greater future role for pharmacophore modeling and virtual drug screening simulations in deciphering complex patterns of molecular mechanisms of hERG1 channel openers at the target sites. The developed model is available upon request and it may serve as basis for the synthesis of novel therapeutic hERG1 activators.


ERG1 Potassium Channel/chemistry , Potassium Channel Blockers/chemistry , Binding Sites , Drug Evaluation, Preclinical , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Quantitative Structure-Activity Relationship
20.
ACS Chem Neurosci ; 8(6): 1404-1415, 2017 06 21.
Article En | MEDLINE | ID: mdl-28272861

Dopamine receptor D2 (D2R) plays an important role in the human central nervous system and is a focal target of antipsychotic agents. The D2HighR and D2LowR dimeric models previously developed by our group are used to investigate the prediction of binding affinity of the LY404,039 ligand and its binding mechanism within the catalytic domain. The computational data obtained using molecular dynamics simulations fit well with the experimental results. The calculated binding affinities of LY404,039 using MM/PBSA for the D2HighR and D2LowR targets were -12.04 and -9.11 kcal/mol, respectively. The experimental results suggest that LY404,039 binds to D2HighR and D2LowR with binding affinities (Ki) of 8.2 and 1640 nM, respectively. The high binding affinity of LY404,039 in terms of binding to [3H]domperidone was inhibited by the presence of a guanine nucleotide, indicating an agonist action of the drug at D2HighR. The interaction analysis demonstrated that while Asp114 was among the most critical amino acids for D2HighR binding, residues Ser193 and Ser197 were significantly more important within the binding cavity of D2LowR. Molecular modeling analyses are extended to ensemble docking as well as structure-based pharmacophore model (E-pharmacophore) development using the bioactive conformation of LY404,039 at the binding pocket as a template and screening of small-molecule databases with derived pharmacophore models.


Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cyclic S-Oxides/chemistry , Dopamine Agonists/chemistry , Receptors, Dopamine D2/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation
...