Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 20(1): 163, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37438764

ABSTRACT

BACKGROUND: Acute exposure to seizurogenic organophosphate (OP) nerve agents (OPNA) such as diisopropylfluorophosphate (DFP) or soman (GD), at high concentrations, induce immediate status epilepticus (SE), reactive gliosis, neurodegeneration, and epileptogenesis as a consequence. Medical countermeasures (MCMs-atropine, oximes, benzodiazepines), if administered in < 20 min of OPNA exposure, can control acute symptoms and mortality. However, MCMs alone are inadequate to prevent OPNA-induced brain injury and behavioral dysfunction in survivors. We have previously shown that OPNA exposure-induced SE increases the production of inducible nitric oxide synthase (iNOS) in glial cells in both short- and long- terms. Treating with a water soluble and highly selective iNOS inhibitor, 1400W, for 3 days significantly reduced OPNA-induced brain changes in those animals that had mild-moderate SE in the rat DFP model. However, such mitigating effects and the mechanisms of 1400W are unknown in a highly volatile nerve agent GD exposure. METHODS: Mixed-sex cohort of adult Sprague Dawley rats were exposed to GD (132 µg/kg, s.c.) and immediately treated with atropine (2 mg/kg, i.m) and HI-6 (125 mg/kg, i.m.). Severity of seizures were quantified for an hour and treated with midazolam (3 mg/kg, i.m.). An hour post-midazolam, 1400W (20 mg/kg, i.m.) or vehicle was administered daily for 2 weeks. After behavioral testing and EEG acquisition, animals were euthanized at 3.5 months post-GD. Brains were processed for neuroinflammatory and neurodegeneration markers. Serum and CSF were used for nitrooxidative and proinflammatory cytokines assays. RESULTS: We demonstrate a significant long-term (3.5 months post-soman) disease-modifying effect of 1400W in animals that had severe SE for > 20 min of continuous convulsive seizures. 1400W significantly reduced GD-induced motor and cognitive dysfunction; nitrooxidative stress (nitrite, ROS; increased GSH: GSSG); proinflammatory cytokines in the serum and some in the cerebrospinal fluid (CSF); epileptiform spikes and spontaneously recurring seizures (SRS) in males; reactive gliosis (GFAP + C3 and IBA1 + CD68-positive glia) as a measure of neuroinflammation, and neurodegeneration (especially parvalbumin-positive neurons) in some brain regions. CONCLUSION: These findings demonstrate the long-term disease-modifying effects of a glial-targeted iNOS inhibitor, 1400W, in a rat GD model by modulating reactive gliosis, neurodegeneration (parvalbumin-positive neurons), and neuronal hyperexcitability.


Subject(s)
Enzyme Inhibitors , Epilepsy , Nitric Oxide Synthase Type II , Soman , Status Epilepticus , Animals , Male , Rats , Atropine , Cytokines , Epilepsy/chemically induced , Epilepsy/drug therapy , Gliosis , Midazolam , Neuroglia , Nitric Oxide Synthase Type II/antagonists & inhibitors , Parvalbumins , Rats, Sprague-Dawley , Seizures , Soman/toxicity
2.
Res Sq ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37214912

ABSTRACT

Background Acute exposure to seizurogenic organophosphate (OP) nerve agents (OPNA) such as diisopropylfluorophosphate (DFP) or soman (GD), at high concentrations, induce immediate status epilepticus (SE), reactive gliosis, neurodegeneration, and epileptogenesis as a consequence. Medical countermeasures (MCMs- atropine, oximes, benzodiazepines), if administered in < 20 minutes of OPNA exposure, can control acute symptoms and mortality. However, MCMs alone are inadequate to prevent OPNA-induced brain injury and behavioral dysfunction in survivors. We have previously shown that OPNA exposure-induced SE increases the production of inducible nitric oxide synthase (iNOS) in glial cells in both short- and long- terms. Treating with a water soluble and highly selective iNOS inhibitor, 1400W, for three days significantly reduced OPNA-induced brain changes in those animals that had mild-moderate SE in the rat DFP model. However, such mitigating effects and the mechanisms of 1400W are unknown in a highly volatile nerve agent GD exposure. Methods Mixed-sex cohort of adult Sprague Dawley rats were exposed to GD (132µg/kg, s.c.) and immediately treated with atropine (2mg/kg, i.m) and HI-6 (125mg/kg, i.m.). Severity of seizures were quantified for an hour and treated with midazolam (3mg/kg, i.m.). An hour post-midazolam, 1400W (20mg/kg, i.m.) or vehicle was administered daily for two weeks. After behavioral testing and EEG acquisition, animals were euthanized at 3.5 months post-GD. Brains were processed for neuroinflammatory and neurodegeneration markers. Serum and CSF were used for nitrooxidative and proinflammatory cytokines assays. Results We demonstrate a significant long-term (3.5 months post-soman) disease-modifying effect of 1400W in animals that had severe SE for > 20min of continuous convulsive seizures. 1400W significantly reduced GD-induced motor and cognitive dysfunction; nitrooxidative stress (nitrite, ROS; increased GSH: GSSG); proinflammatory cytokines in the serum and some in the cerebrospinal fluid (CSF); epileptiform spikes and spontaneously recurring seizures (SRS) in males; reactive gliosis (GFAP + C3 and IBA1 + CD68 positive glia) as a measure of neuroinflammation, and neurodegeneration (including parvalbumin positive neurons) in some brain regions. Conclusion These findings demonstrate the long-term disease-modifying effects of a glial-targeted iNOS inhibitor, 1400W, in a rat GD model by modulating reactive gliosis, neurodegeneration, and neuronal hyperexcitability.

3.
Front Mol Neurosci ; 16: 1125934, 2023.
Article in English | MEDLINE | ID: mdl-37008784

ABSTRACT

Organophosphate nerve agent (OPNA) exposure induces acute and long-term neurological deficits. OPNA exposure at sub-lethal concentrations induces irreversible inhibition of acetylcholinesterase and cholinergic toxidrome and develops status epilepticus (SE). Persistent seizures have been associated with increased production of ROS/RNS, neuroinflammation, and neurodegeneration. A total of 1400W is a novel small molecule, which irreversibly inhibits inducible nitric oxide synthase (iNOS) and has been shown to effectively reduce ROS/RNS generation. In this study, we investigated the effects of 1400W treatment for a week or two weeks at 10 mg/kg or 15 mg/kg per day in the rat diisopropylfluorophosphate (DFP) model. 1400W significantly reduced the number of microglia, astroglia, and NeuN+FJB positive cells compared to the vehicle in different regions of the brain. 1400W also significantly reduced nitrooxidative stress markers and proinflammatory cytokines in the serum. However, neither of the two concentrations of 1400W for two weeks of treatment had any significant effect on epileptiform spike rate and spontaneous seizures during the treatment period in mixed sex cohorts, males, or females. No significant sex differences were found in response to DFP exposure or 1400W treatment. In conclusion, 1400W treatment at 15 mg/kg per day for two weeks was more effective in significantly reducing DFP-induced nitrooxidative stress, neuroinflammatory and neurodegenerative changes.

4.
Front Cell Dev Biol ; 10: 895092, 2022.
Article in English | MEDLINE | ID: mdl-35620057

ABSTRACT

Sex is a biological variable in experimental models. In our previous diisopropylfluorophosphate (DFP) studies, female rats required a higher dose of DFP to achieve a somewhat similar severity of status epilepticus (SE) as males. In those studies, male and female rats were bought separately from the same vendor, housed in different rooms, and the DFP used was from different batches. We had also shown that surgery for epidural electrodes implantation reduces the threshold for SE. Our recent study in the soman (GD) model using a mixed-sex cohort of rats housed individually but in the same room showed that females achieved significantly higher SE severity than males for the same dose of GD. In this study, we demonstrate that housing the mixed-sex cohorts in the same room and treating them with DFP (4 mg/kg, s.c.) from the same pool, though from different batches, yielded reproducible SE severity in both sexes and both telemetry (surgery) and non-telemetry (non-surgery) groups. We conducted experiments in four mixed-sex cohorts of adult Sprague-Dawley rats. In females, the surgery for implanting the telemetry devices reduced the latency to convulsive seizure (CS) and increased SE severity compared to non-telemetry females. However, there were no sex differences in latency or SE severity within telemetry or non-telemetry groups. Once animals reached CS stage ≥3, they remained in CS stage in both sexes until midazolam was administered. Midazolam (3 mg/kg, i.m.) treatment 1-one-hour post-DFP significantly reduced epileptiform spikes in both sexes. The mortality was only 2% in 24 h. Irrespective of sex or stage of estrous cycle or surgery, the animals had continuous convulsive SE for ∼40 min. In telemetry rats, electrographic changes correlated with behavioral seizures. However, there was a significant difference in SE severity and the latency between directly-observed behavioral CS and EEG-based CS quantification in both sexes. Overall, these results suggest that housing both sexes in the same room and treating with DFP in a mixed-sex cohort from the same pool of reagents will minimize variability in SE severity. Such rigorous experiments will yield better outcomes while testing disease-modifying agents in epilepsy models.

5.
Int J Biochem Cell Biol ; 147: 106225, 2022 06.
Article in English | MEDLINE | ID: mdl-35550926

ABSTRACT

Despite the growing recognition that gastrointestinal (GI) dysfunction is prevalent in Parkinson's disease (PD) and occurs as a major prodromal symptom of PD, its cellular and molecular mechanisms remain largely unknown. Among the various types of GI cells, enteric glial cells (EGCs), which resemble astrocytes in structure and function, play a critical role in the pathophysiology of many GI diseases including PD. Thus, we investigated how EGCs respond to the environmental pesticides rotenone (Rot) and tebufenpyrad (Tebu) in cell and animal models to better understand the mechanism underlying GI abnormalities. Both Rot and Tebu induce dopaminergic neuronal cell death through complex 1 inhibition of the mitochondrial respiratory chain. We report that exposing a rat enteric glial cell model (CRL-2690 cells) to these pesticides increased mitochondrial fission and reduced mitochondrial fusion by impairing MFN2 function. Furthermore, they also increased mitochondrial superoxide generation and impaired mitochondrial ATP levels and basal respiratory rate. Measurement of LC3, p62 and lysosomal assays revealed impaired autolysosomal function in ECGs during mitochondrial stress. Consistent with our recent findings that mitochondrial dysfunction augments inflammation in astrocytes and microglia, we found that neurotoxic pesticide exposure also enhanced the production of pro-inflammatory factors in EGCs in direct correlation with the loss in mitochondrial mass. Finally, we show that pesticide-induced mitochondrial defects functionally impaired smooth muscle velocity, acceleration, and total kinetic energy in a mixed primary culture of the enteric nervous system (ENS). Collectively, our studies demonstrate for the first time that exposure to environmental neurotoxic pesticides impairs mitochondrial bioenergetics and activates inflammatory pathways in EGCs, further augmenting mitochondrial dysfunction and pro-inflammatory events to induce gut dysfunction. Our findings have major implications in understanding the GI-related pathogenesis and progression of environmentally linked PD.


Subject(s)
Parkinson Disease , Pesticides , Animals , Brain-Gut Axis , Inflammation/chemically induced , Mitochondria , Neuroglia , Parkinson Disease/etiology , Pesticides/toxicity , Rats , Rotenone/toxicity
6.
Front Aging Neurosci ; 13: 661505, 2021.
Article in English | MEDLINE | ID: mdl-34276337

ABSTRACT

A classical hallmark of Parkinson's disease (PD) pathogenesis is the accumulation of misfolded alpha-synuclein (αSyn) within Lewy bodies and Lewy neurites, although its role in microglial dysfunction and resultant dopaminergic (DAergic) neurotoxicity is still elusive. Previously, we identified that protein kinase C delta (PKCδ) is activated in post mortem PD brains and experimental Parkinsonism and that it participates in reactive microgliosis; however, the relationship between PKCδ activation, endoplasmic reticulum stress (ERS) and the reactive microglial activation state in the context of α-synucleinopathy is largely unknown. Herein, we show that oxidative stress, mitochondrial dysfunction, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, and PKCδ activation increased concomitantly with ERS markers, including the activating transcription factor 4 (ATF-4), serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1α (p-IRE1α), p-eukaryotic initiation factor 2 (eIF2α) as well as increased generation of neurotoxic cytokines, including IL-1ß in aggregated αSynagg-stimulated primary microglia. Importantly, in mouse primary microglia-treated with αSynagg we observed increased expression of Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of the thioredoxin (Trx) pathway, a major antioxidant protein system. Additionally, αSynagg promoted interaction between NLRP3 and TXNIP in these cells. In vitro knockdown of PKCδ using siRNA reduced ERS and led to reduced expression of TXNIP and the NLRP3 activation response in αSynagg-stimulated mouse microglial cells (MMCs). Additionally, attenuation of mitochondrial reactive oxygen species (mitoROS) via mito-apocynin and amelioration of ERS via the eIF2α inhibitor salubrinal (SAL) reduced the induction of the ERS/TXNIP/NLRP3 signaling axis, suggesting that mitochondrial dysfunction and ERS may act in concert to promote the αSynagg-induced microglial activation response. Likewise, knockdown of TXNIP by siRNA attenuated the αSynagg-induced NLRP3 inflammasome activation response. Finally, unilateral injection of αSyn preformed fibrils (αSynPFF) into the striatum of wild-type mice induced a significant increase in the expression of nigral p-PKCδ, ERS markers, and upregulation of the TXNIP/NLRP3 inflammasome signaling axis prior to delayed loss of TH+ neurons. Together, our results suggest that inhibition of ERS and its downstream signaling mediators TXNIP and NLRP3 might represent novel therapeutic avenues for ameliorating microglia-mediated neuroinflammation in PD and other synucleinopathies.

7.
Front Cell Neurosci ; 15: 798247, 2021.
Article in English | MEDLINE | ID: mdl-35197823

ABSTRACT

Modeling a real-world scenario of organophosphate nerve agent (OPNA) exposure is challenging. Military personnel are premedicated with pyridostigmine, which led to the development of OPNA models with pyridostigmine/oxime pretreatment to investigate novel therapeutics for acute and chronic effects. However, civilians are not premedicated with pyridostigmine/oxime. Therefore, experimental models without pyridostigmine were developed by other laboratories though often only in males. Following OPNA exposure, prolonged convulsive seizures (CS) or status epilepticus (SE) are concerning. The duration and severity of CS/SE determine the extent of brain injury in survivors even after treating with medical countermeasures (MCM)/antidotes such as atropine, an oxime, and an anticonvulsant such as diazepam/midazolam. In this study, using a large mixed sex cohort of adult male and female rats, without pretreatment, we demonstrate severe SE lasting for >20 min in 82% of the animals in response to soman (GD,132 µg/kg, s.c.). Atropine sulfate (2 mg/kg, i.m.) and HI-6 (125 mg/kg, i.m.) were administered immediately following soman, and midazolam (3 mg/kg, i.m.) 1 h post-exposure. Immediate MCM treatment is impractical in civilian exposure to civilians, but this approach reduces mortality in experimental models. Interestingly, female rats, irrespective of estrous stages, had an average of 44 min CS (stage ≥ 3), while males had an average of 32 min CS during SE, starting from soman exposure to midazolam treatment. However, in telemetry device implanted groups, there were no significant sex differences in SE severity; males had 40 min and females 43 min of continuous CS until midazolam was administered. No animals died prior to midazolam administration and less than 5% died in the first week after soman intoxication. In telemetered animals, there was a direct correlation between EEG changes and behavioral seizures in real-time. In the long-term, convulsive spontaneously recurring seizures (SRS) were observed in 85% of randomly chosen animals. At 4-months post-soman, the brain histology confirmed reactive gliosis and neurodegeneration. The novel findings of this study are that, in non-telemetered animals, the SE severity following soman intoxication was significantly greater in females compared to males and that the estrous cycle did not influence the response.

8.
Cells ; 9(8)2020 08 04.
Article in English | MEDLINE | ID: mdl-32759670

ABSTRACT

Astrocytic dysfunction has been implicated in Parkinson's disease (PD) pathogenesis. While the Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 signaling axis is known to play a role in PD-like neuropathology, the molecular mechanisms that govern this process remain poorly understood. Herein, we show that TWEAK levels are elevated in PD serum compared to controls. Moreover, using both U373 human astrocyte cells and primary mouse astrocytes, we demonstrate that TWEAK induces mitochondrial oxidative stress as well as protein kinase C delta (PKCδ) and signal transducer and activator of transcription 3 (STAT3) activation, accompanied by NLRC4 inflammasome activation and upregulation and release of proinflammatory cytokines, including IL-1ß, TNF-α, and IL-18. Mechanistically, TWEAK-induced PKCδ activation enhances the STAT3/NLRC4 signaling pathway and other proinflammatory mediators through a mitochondrial oxidative stress-dependent mechanism. We further show that PKCδ knockdown and mito-apocynin, a mitochondrial antioxidant, suppress TWEAK-induced proinflammatory NLRC4/STAT3 signaling and cellular oxidative stress response. Notably, we validated our in vitro findings in an MPTP mouse model of PD and in mice receiving intrastriatal administration of TWEAK. These results indicate that TWEAK is a key regulator of astroglial reactivity and illustrate a novel mechanism by which mitochondrial oxidative stress may influence dopaminergic neuronal survival in PD.


Subject(s)
Astrocytes/metabolism , CARD Signaling Adaptor Proteins/metabolism , Calcium-Binding Proteins/metabolism , Cytokine TWEAK/metabolism , Inflammasomes/metabolism , Parkinson Disease/metabolism , Protein Kinase C-delta/metabolism , STAT3 Transcription Factor/metabolism , Animals , Apoptosis , Astrocytes/pathology , Cell Survival , Cells, Cultured , Cytokine TWEAK/blood , Cytokine TWEAK/genetics , Disease Models, Animal , Dopaminergic Neurons/pathology , Humans , Inflammation Mediators/metabolism , Mice , Mitochondria/metabolism , Oxidative Stress/drug effects , Parkinson Disease/pathology , Protein Kinase C-delta/genetics , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , TWEAK Receptor/metabolism
9.
Mol Neurobiol ; 57(1): 315-330, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31332763

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and dementia with no effective treatment. Here, we investigated a novel compound from oats named avenanthramide-C (Avn-C), on AD-related memory impairment and behavioral deficits in transgenic mouse models. Acute hippocampal slices of wild-type or AD transgenic mice were treated with Avn-C in the presence or absence of oligomeric Aß42. LTP analyses and immunoblotting were performed to assess the effect of Avn-C on Aß-induced memory impairment. To further investigate the effect of Avn-C on impaired memory and Aß pathology, two different AD transgenic mice (Tg2576 and 5XFAD) models were orally treated with either Avn-C or vehicle for 2 weeks. They were then assessed for the effect of the treatment on neuropathologies and behavioral impairments. Avn-C reversed impaired LTP in both ex vivo- and in vivo-treated AD mice hippocampus. Oral administration (6 mg/kg per day) for 2 weeks in AD mice leads to improved recognition and spatial memory, reduced caspase-3 cleavage, reversed neuroinflammation, and to accelerated glycogen synthase kinase-3ß (pS9GSK-3ß) and interleukin (IL-10) levels. Avn-C exerts its beneficial effects by binding to α1A adrenergic receptors to stimulate adenosine monophosphate-activated kinase (AMPK). All of the beneficial effects of Avn-C on LTP retrieval could be blocked by prazosin hydrochloride, a specific inhibitor of α1A adrenergic receptors. Our findings provide evidence, for the first time, that oats' Avn-C reverses the AD-related memory and behavioral impairments, and establish it as a potential candidate for Alzheimer's disease drug development.


Subject(s)
Alzheimer Disease/physiopathology , Cognition/drug effects , Neuronal Plasticity/drug effects , ortho-Aminobenzoates/pharmacology , Adenylate Kinase/metabolism , Administration, Oral , Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Brain/drug effects , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Enzyme Activation/drug effects , Inflammation/pathology , Long-Term Potentiation/drug effects , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Receptors, Adrenergic, alpha-1/metabolism , Recognition, Psychology/drug effects , Spatial Memory , ortho-Aminobenzoates/administration & dosage
10.
Sci Rep ; 9(1): 10955, 2019 07 29.
Article in English | MEDLINE | ID: mdl-31358853

ABSTRACT

Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer's disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models.


Subject(s)
Alzheimer Disease/metabolism , CA1 Region, Hippocampal/metabolism , Long-Term Potentiation , Receptors, AMPA/metabolism , Stress, Psychological/metabolism , Animals , CA1 Region, Hippocampal/pathology , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity , Restraint, Physical/psychology , Synaptic Transmission
11.
Mol Neurobiol ; 56(12): 8076-8086, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31183806

ABSTRACT

Melanin-concentrating hormone (MCH) is a highly conserved neuropeptide known to exhibit important functions in the brain. Some studies have reported that MCH improves memory by promoting memory retention. However, the precise molecular mechanisms by which MCH enhances memory impairment have yet to be fully elucidated. In this study, MCH was administered to the scopolamine-induced memory-impaired mice via the nasal cavity to examine the acute effects of MCH and Alzheimer's disease (AD) mouse models to evaluate the chronic effects of MCH. MCH improved memory impairment in both models and reduced soluble amyloid beta in the cerebral cortex of APP/PS1 transgenic mice. In vitro assays also showed that MCH inhibits amyloid beta-induced cytotoxicity. Furthermore, MCH increased long-term potentiation (LTP) in the hippocampus of wild-type and 5XFAD AD mouse model. To further elucidate the mechanisms of the chronic effect of MCH, the levels of phosphorylated CREB and GSK3ß, and the expression of BDNF, TrkB and PSD95 were examined in the cerebral cortex and hippocampus. Our findings indicate that MCH might have neuroprotective effects via downstream pathways associated with the enhancement of neuronal synapses and LTP. This suggests a therapeutic potential of MCH for the treatment of neurodegenerative diseases such as AD.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Disease Models, Animal , Hypothalamic Hormones/administration & dosage , Melanins/administration & dosage , Memory Disorders/drug therapy , Memory Disorders/metabolism , Pituitary Hormones/administration & dosage , Administration, Intranasal , Animals , Brain/drug effects , Brain/metabolism , Cell Line, Tumor , Female , Humans , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nasal Cavity/drug effects , Nasal Cavity/metabolism , Pregnancy
12.
J Exp Med ; 216(6): 1411-1430, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31036561

ABSTRACT

Persistent microglia-mediated neuroinflammation is a major pathophysiological contributor to the progression of Parkinson's disease (PD), but the cell-signaling mechanisms governing chronic neuroinflammation are not well understood. Here, we show that Fyn kinase, in conjunction with the class B scavenger receptor CD36, regulates the microglial uptake of aggregated human α-synuclein (αSyn), which is the major component of PD-associated Lewy bodies. αSyn can effectively mediate LPS-independent priming and activation of the microglial NLRP3 inflammasome. Fyn kinase regulates both of these processes; it mediates PKCδ-dependent NF-κB-p65 nuclear translocation, leading to inflammasome priming, and facilitates αSyn import into microglia, contributing to the generation of mitochondrial reactive oxygen species and consequently to inflammasome activation. In vivo experiments using A53T and viral-αSyn overexpression mouse models as well as human PD neuropathological results further confirm the role of Fyn in NLRP3 inflammasome activation. Collectively, our study identifies a novel Fyn-mediated signaling mechanism that amplifies neuroinflammation in PD.


Subject(s)
Inflammasomes/metabolism , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Folding , Proto-Oncogene Proteins c-fyn/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Animals , CD36 Antigens/metabolism , Dependovirus/metabolism , Disease Models, Animal , Enzyme Activation , Gliosis/metabolism , Gliosis/pathology , Humans , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Models, Biological , NF-kappa B/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Aggregates , Protein Kinase C-delta/metabolism , Proto-Oncogene Proteins c-fyn/deficiency , Reactive Oxygen Species/metabolism
13.
Nano Lett ; 18(10): 6417-6426, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30247915

ABSTRACT

Oxidative stress during sepsis pathogenesis remains the most-important factor creating imbalance and dysregulation in immune-cell function, usually observed following initial infection. Hydrogen peroxide (H2O2), a potentially toxic reactive oxygen species (ROS), is excessively produced by pro-inflammatory immune cells during the initial phases of sepsis and plays a dominant role in regulating the pathways associated with systemic inflammatory immune activation. In the present study, we constructed a peroxide scavenger mannosylated polymeric albumin manganese dioxide (mSPAM) nanoassembly to catalyze the decomposition of H2O2 responsible for the hyper-activation of pro-inflammatory immune cells. In a detailed manner, we investigated the role of mSPAM nanoassembly in modulating the expression and secretion of pro-inflammatory markers elevated in bacterial lipopolysaccharide (LPS)-mediated endotoxemia during sepsis. Through a facile one-step solution-phase approach, hydrophilic bovine serum albumin reduced manganese dioxide (BM) nanoparticles were synthesized and subsequently self-assembled with cationic mannosylated disulfide cross-linked polyethylenimine (mSP) to formulate mSPAM nanoassembly. In particular, we observed that the highly stable mSPAM nanoassembly suppressed HIF1α expression by scavenging H2O2 in LPS-induced macrophage cells. Initial investigation revealed that a significant reduction of free radicals by the treatment of mSPAM nanoassembly has reduced the infiltration of neutrophils and other leukocytes in a local endotoxemia animal model. Furthermore, therapeutic studies in a systemic endotoxemia model demonstrated that mSPAM treatment reduced TNF-α and IL-6 inflammatory cytokines in serum, in turn circumventing organ damage done by the inflammatory macrophages. Interestingly, we also observed that the reduction of these inflammatory cytokines by mSPAM nanoassembly further prevented IBA-1 immuno-positive microglial cell activation in the brain and consequently improved the cognitive function of the animals. Altogether, the administration of mSPAM nanoassembly scavenged H2O2 and suppressed HIF1α expression in LPS-stimulated macrophages and thereby inhibited the progression of local and systemic inflammation as well as neuroinflammation in an LPS-induced endotoxemia model. This mSPAM nanoassembly system could serve as a potent anti-inflammatory agent, and we further anticipate its successful application in treating various inflammation-related diseases.


Subject(s)
Cognitive Dysfunction/drug therapy , Endotoxemia/drug therapy , Inflammation/drug therapy , Nanocomposites/administration & dosage , Albumins/chemistry , Albumins/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Endotoxemia/chemically induced , Endotoxemia/genetics , Gene Expression Regulation/drug effects , Humans , Hydrogen Peroxide/toxicity , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation/chemically induced , Inflammation/genetics , Inflammation/pathology , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/pathology , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Mice , Nanocomposites/chemistry , Oxidative Stress/drug effects , Oxides/chemistry , Oxides/pharmacology , Peroxidase/chemistry , Peroxidase/genetics , Peroxides/chemistry , Peroxides/pharmacology , Reactive Oxygen Species/toxicity , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/genetics
14.
Neurol Res ; 40(4): 268-276, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29458298

ABSTRACT

Objective The suppressive action of the acute application of oligomeric amyloid-ß (Aß) on hippocampal long-term potentiation (LTP) has been reported widely. Many mechanisms have been proposed for Aß inhibited LTP induction. The inflammatory cytokine tumor necrosis factor-α (TNF-α) has also been reported to play a key role in this LTP inhibition through Aß. However, the underlying molecular mechanisms are largely unknown. This study aimed to investigate the link between Aß- and TNF-α-mediated hippocampal LTP inhibition. Methods Acute hippocampal slices of male wildtype or Alzheimer's disease (AD) transgenic mouse models were treated with the inhibitors of either TNF-α, IκB Kinase (IKK) or Nuclear Factor-κB (NF-κB) in the presence or absence of oligomeric Aß42 (500 nM/2 h). The LTP was assessed using field excitatory post synaptic potential recordings (fEPSP), and immunoblotting was used to evaluate the expression of IKK and NF-κB. Results Acute treatment with Aß or TNF-α alone inhibited LTP and increased the phosphorylation of IKK and NF-κB in wild type mouse hippocampal slices. Pretreatment with TNF-α antagonist infliximab rescued the LTP impairment by Aß and also restored the levels of IKK and NF-κB to the control levels. In addition, pretreatment with IKK2 IV or JSH23 also restored the Aß-mediated LTP impairment. Furthermore, AD transgenic mouse hippocampal slices treated with infliximab or inhibitors of IKK or NF-κB showed improved LTP and reversed the activation of IKK and NF-κB. Conclusion In conclusion, our observations suggest that the IKK/NF-κB signaling pathway play an important role in Aß-mediated hippocampal LTP impairment. Aß might modulate IKK/NF-κB activity by binding or activating tumor necrosis factor receptor (TNFR).


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/pharmacology , Hippocampus/physiology , I-kappa B Kinase/metabolism , Long-Term Potentiation , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Disease Models, Animal , Hippocampus/drug effects , Male , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/drug effects
15.
Neuroscience ; 358: 336-348, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28687316

ABSTRACT

Parkinson's disease (PD) is characterized by the formation of Lewy bodies (LBs) in dopaminergic neurons. α-Synuclein (α-syn), a major protein component of LBs, is known to regulate synaptic plasticity, with a crucial role in memory and motor function in the central nervous system. Levodopa (L-3,4-dihydroxyphenylalanine; also known as L-DOPA) is considered the most effective medication for controlling the symptoms of PD. However, it is unclear whether L-DOPA improves the neuropathology of PD. In the present study, we investigated the effect of L-DOPA on SH-SY5Y neuronal cells under α-syn-induced toxicity. We assessed the protein and mRNA levels of endoplasmic reticulum (ER) stress and cell death markers using western blot analysis and reverse transcription-PCR. Our data showed that L-DOPA could attenuate ER stress markers, including the levels of activating transcription factor 4 (ATF4), C/EBPhomologous protein expression (CHOP), immunoglobulin-heavy-chain-binding protein (BiP), sliced X-box-binding protein 1 (XBP-1), and reduce nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling through dopamine receptor D2 (DRD2) in SH-SY5Y neuronal cells under α-syn-induced toxicity. In conclusion, we suggest that L-DOPA may attenuate the neuropathology of PD by regulating signaling related to DRD2 in neuronal cells under α-syn-induced toxicity. Our study, therefore, indicates an additional role for L-DOPA in the treatment of PD.


Subject(s)
Dopamine Agents/pharmacology , Endoplasmic Reticulum Stress/drug effects , Levodopa/pharmacology , Neurons/drug effects , Receptors, Dopamine D2/metabolism , Signal Transduction/drug effects , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cell Death/drug effects , Cell Line, Tumor , Disks Large Homolog 4 Protein/genetics , Disks Large Homolog 4 Protein/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic/drug effects , Humans , Iron-Regulatory Proteins/genetics , Iron-Regulatory Proteins/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Neuroblastoma/pathology , Neurons/metabolism , RNA, Messenger , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , alpha-Synuclein/pharmacology , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...