Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Vaccines (Basel) ; 12(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39066404

ABSTRACT

The SARS-CoV-2 pandemic and the emergence of novel virus variants have had a dramatic impact on public health and the world economy, underscoring the need for detailed studies that explore the high efficacy of additional vaccines in animal models. In this study, we confirm the pathogenicity of the SARS-CoV-2/Leiden_008 isolate (GenBank accession number MT705206.1) in K18-hACE2 transgenic mice. Using this isolate, we show that a vaccine consisting of capsid virus-like particles (cVLPs) displaying the receptor-binding domain (RBD) of SARS-CoV-2 (Wuhan strain) induces strong neutralizing antibody responses and sterilizing immunity in K18-hACE2 mice. Furthermore, we demonstrate that vaccination with the RBD-cVLP vaccine protects mice from both a lethal infection and symptomatic disease. Our data also indicate that immunization significantly reduces inflammation and lung pathology associated with severe disease in mice. Additionally, we show that the survival of naïve animals significantly increases when sera from animals vaccinated with RBD-cVLP are passively transferred, prior to a lethal virus dose. Finally, the RBD-cVLP vaccine has a similar antigen composition to the clinical ABNCOV2 vaccine, which has shown non-inferiority to the Comirnaty mRNA vaccine in phase I-III trials. Therefore, our study provides evidence that this vaccine design is highly immunogenic and confers full protection against severe disease in mice.

2.
PLoS One ; 19(7): e0302243, 2024.
Article in English | MEDLINE | ID: mdl-39046960

ABSTRACT

The sequestration of Plasmodium falciparum-infected erythrocytes to the host endothelium is central to the pathogenesis of malaria. The sequestration is mediated by the parasite´s diverse Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variants, which bind select human receptors on the endothelium. Severe malaria is associated with PfEMP1 binding human endothelial protein C receptor (EPCR) via their CIDRα1 domains. Antibodies binding and inhibiting across the sequence diverse CIDRα1 domains are likely important in acquired immunity against severe malaria. In this study, we explored if immunization with AP205 bacteriophage capsid-virus-like particles (cVLPs) presenting a mosaic of diverse CIDRα1 protein variants would stimulate broadly reactive and inhibitory antibody responses in mice. Three different mosaic cVLP vaccines each composed of five CIDRα1 protein variants with varying degrees of sequence conservation of residues at and near the EPCR binding site, were tested. All mosaic cVLP vaccines induced functional antibodies comparable to those induced by matched cocktails of cVLPs decorated with the single CIDRα1 variant. No broadly reactive responses were observed. However, the vaccines did induce some cross-reactivity and inhibition within the CIDRα1 subclasses included in the vaccines, demonstrating potential use of the cVLP vaccine platform for the design of multivalent vaccines.


Subject(s)
Endothelial Protein C Receptor , Protozoan Proteins , Vaccines, Virus-Like Particle , Animals , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Mice , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Humans , Endothelial Protein C Receptor/immunology , Endothelial Protein C Receptor/metabolism , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium falciparum/immunology , Antibodies, Protozoan/immunology , Female , Protein Domains , Protein Binding , Mice, Inbred BALB C , Receptors, Cell Surface/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology
3.
NPJ Parkinsons Dis ; 10(1): 139, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075088

ABSTRACT

α-Synuclein (α-syn) accumulates as insoluble amyloid but also forms soluble α-syn oligomers (αSOs), thought to be even more cytotoxic than fibrils. To detect and block the unwanted activities of these αSOs, we have raised 30 monoclonal antibodies (mAbs) against different forms of αSOs, ranging from unmodified αSOs to species stabilized by lipid peroxidation products and polyphenols, αSOs formed by C-terminally truncated α-syn, and multivalent display of α-syn on capsid virus-like particles (cVLPs). While the mAbs generally show a preference for αSOs, they also bind fibrils, but to variable extents. Overall, we observe great diversity in the mAbs' relative affinities for monomers and αSOs, varied requirements for the C-terminal extension of α-syn, and only a modest effect on α-syn fibrillation. Several mAbs show several orders of magnitude preference for αSOs over monomers in in-solution studies, while the commercial antibody MJF14 only bound 10-fold more strongly to αSOs than monomeric α-syn. Gratifyingly, seven mAbs almost completely block αSO permeabilization of membrane vesicles. Five selected mAbs identified α-syn-related pathologies like Lewy bodies (LBs) and Lewy Neurites, as well as Glial Cytoplasmic Inclusions in postmortem brains from people diagnosed for PD, dementia with LBs or multiple system atrophy, although to different extents. Three mAbs were particularly useful for pathological evaluation of postmortem brain human tissue, including early stages of PD. Although there was no straightforward connection between the mAbs' biophysical and immunohistochemical properties, it is encouraging that this comprehensive collection of mAbs able to recognize different aggregated α-syn species in vitro also holds diagnostic potential.

4.
iScience ; 27(6): 110038, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38883830

ABSTRACT

Supplementing influenza vaccines with additional protective antigens such as neuraminidase (NA) is a promising strategy for increasing the breadth of the immune response. Here, we improved the immunogenicity and stability of secreted recombinant NA (rNA) tetramers by covalently conjugating them onto the surface of AP205 capsid virus-like particles (cVLPs) using a Tag/Catcher ligation system. cVLP display increased the induction of IgG2a subclass anti-NA antibodies, which exhibited cross-reactivity with an antigenically distant homologous NA. It also reduced the single dose rNA amounts needed for protection against viral challenge in mice, demonstrating a dose-sparing effect. Moreover, effective cVLP-display was achieved across different NA subtypes, even when the conjugation was performed shortly before administration. Notably, the rNA-cVLP immunogenicity was retained upon mixing or co-administering with commercial vaccines. These results highlight the potential of this approach for bolstering the protective immune responses elicited by influenza vaccines.

5.
Pathogens ; 12(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38133272

ABSTRACT

F4-positive enterotoxigenic Escherichia coli is associated with diarrhea and poor growth outcomes in neonatal and newly weaned piglets and is thus a major economic and welfare burden in the swine industry. Vaccination of sows with F4 fimbriae protects against the neonatal disease via passive transfer of maternal immunity. However, this strategy does not protect against infection post-weaning. Consequently, prevention and treatment methods in weaner pigs heavily rely on the use of antimicrobials. Therefore, in order to reduce antimicrobial consumption, more effective prophylactic alternatives are needed. In this study, we describe the development of a capsid virus-like particle (cVLP)-based vaccine targeting the major F4 fimbriae subunit and adhesion molecule, FaeG, and evaluate its immunogenicity in mice, piglets, and sows. cVLP-display significantly increased systemic and mucosal antibody responses towards the recombinant FaeG antigen in mice models. However, in piglets, the presence of anti-F4 maternally derived antibodies severely inhibited the induction of active humoral responses towards the FaeG antigen. This inhibition could not be overcome, even with the enhanced immunogenicity achieved via cVLP display. However, in sows, intramuscular vaccination with the FaeG.cVLP vaccine was able to generate robust IgG and IgA responses that were comparable with a commercial fimbriae-based vaccine, and which were effectively transferred to piglets via colostrum intake. These results demonstrate that cVLP display has the potential to improve the systemic humoral responses elicited against low-immunogenic antigens in pigs; however, this effect is dependent on the use of antigens, which are not the targets of pre-existing maternal immunity.

6.
Lab Anim (NY) ; 52(12): 315-323, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37932470

ABSTRACT

Placental malaria vaccines (PMVs) are being developed to prevent severe sequelae of placental malaria (PM) in pregnant women and their offspring. The leading candidate vaccine antigen VAR2CSA mediates parasite binding to placental receptor chondroitin sulfate A (CSA). Despite promising results in small animal studies, recent human trials of the first two PMV candidates (PAMVAC and PRIMVAC) generated limited cross-reactivity and cross-inhibitory activity to heterologous parasites. Here we immunized Aotus nancymaae monkeys with three PMV candidates (PAMVAC, PRIMVAC and ID1-ID2a_M1010) adjuvanted with Alhydrogel, and exploited the model to investigate boosting of functional vaccine responses during PM episodes as well as with nanoparticle antigens. PMV candidates induced high levels of antigen-specific IgG with significant cross-reactivity across PMV antigens by enzyme-linked immunosorbent assay. Conversely, PMV antibodies recognized native VAR2CSA and blocked CSA adhesion of only homologous parasites and not of heterologous parasites. PM episodes did not significantly boost VAR2CSA antibody levels or serum functional activity; nanoparticle and monomer antigens alike boosted serum reactivity but not functional activities. Overall, PMV candidates induced functional antibodies with limited heterologous activity in Aotus monkeys, similar to responses reported in humans. The Aotus model appears suitable for preclinical downselection of PMV candidates and assessment of antibody boosting by PM episodes.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Humans , Female , Pregnancy , Placenta/parasitology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Plasmodium falciparum , Antigens, Protozoan , Antibodies, Protozoan , Malaria/prevention & control , Aotidae , Immunity
7.
Infect Immun ; 91(12): e0024523, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37916806

ABSTRACT

Virus-like particles (VLPs) are promising nanotools for the development of subunit vaccines due to high immunogenicity and safety. Herein, we explored the versatile and effective Tag/Catcher-AP205 capsid VLP (cVLP) vaccine platform to address the urgent need for the development of an effective and safe vaccine against gonorrhea. The benefits of this clinically validated cVLP platform include its ability to facilitate unidirectional, high-density display of complex/full-length antigens through an effective split-protein Tag/Catcher conjugation system. To assess this modular approach for making cVLP vaccines, we used a conserved surface lipoprotein, SliC, that contributes to the Neisseria gonorrhoeae defense against human lysozyme, as a model antigen. This protein was genetically fused at the N- or C-terminus to the small peptide Tag enabling their conjugation to AP205 cVLP, displaying the complementary Catcher. We determined that SliC with the N-terminal SpyTag, N-SliC, retained lysozyme-blocking activity and could be displayed at high density on cVLPs without causing aggregation. In mice, the N-SliC-VLP vaccines, adjuvanted with AddaVax or CpG, induced significantly higher antibody titers compared to controls. In contrast, similar vaccine formulations containing monomeric SliC were non-immunogenic. Accordingly, sera from N-SliC-VLP-immunized mice also had significantly higher human complement-dependent serum bactericidal activity. Furthermore, the N-SliC-VLP vaccines administered subcutaneously with an intranasal boost elicited systemic and vaginal IgG and IgA, whereas subcutaneous delivery alone failed to induce vaginal IgA. The N-SliC-VLP with CpG (10 µg/dose) induced the most significant increase in total serum IgG and IgG3 titers, vaginal IgG and IgA, and bactericidal antibodies.


Subject(s)
Neisseria gonorrhoeae , Vaccines, Virus-Like Particle , Animals , Female , Humans , Mice , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Capsid , Immunoglobulin A , Immunoglobulin G , Mice, Inbred BALB C , Muramidase , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/immunology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology
8.
iScience ; 26(9): 107619, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37670790

ABSTRACT

IgG antibodies are important mediators of vaccine-induced immunity through complement- and Fc receptor-dependent effector functions. Both are influenced by the composition of the conserved N-linked glycan located in the IgG Fc domain. Here, we compared the anti-Spike (S) IgG1 Fc glycosylation profiles in response to mRNA, adenoviral, and protein-based COVID-19 vaccines by mass spectrometry (MS). All vaccines induced a transient increase of antigen-specific IgG1 Fc galactosylation and sialylation. An initial, transient increase of afucosylated IgG was induced by membrane-encoding S protein formulations. A fucose-sensitive ELISA for antigen-specific IgG (FEASI) exploiting FcγRIIIa affinity for afucosylated IgG was used as an orthogonal method to confirm the LC-MS-based afucosylation readout. Our data suggest that vaccine-induced anti-S IgG glycosylation is dynamic, and although variation is seen between different vaccine platforms and individuals, the evolution of glycosylation patterns display marked overlaps.

9.
Front Immunol ; 14: 1139206, 2023.
Article in English | MEDLINE | ID: mdl-37283749

ABSTRACT

The Gram-negative bacterium A. salmonicida is the causal agent of furunculosis and used to be one of the most loss-causing bacterial infections in the salmonid aquaculture industry with a mortality rate of about 90% until the 1990s, when an inactivated vaccine with mineral oil as adjuvant was successfully implemented to control the disease. However, the use of this vaccine is associated with inflammatory side effects in the peritoneal cavity as well as autoimmune reactions in Atlantic salmon, and incomplete protection has been reported in rainbow trout. We here aimed at developing and testing a recombinant alternative vaccine based on virus-like particles (VLPs) decorated with VapA, the key structural surface protein in the outer A-layer of A. salmonicida. The VLP carrier was based on either the capsid protein of a fish nodavirus, namely red grouper nervous necrotic virus (RGNNV) or the capsid protein of Acinetobacter phage AP205. The VapA and capsid proteins were expressed individually in E. coli and VapA was fused to auto-assembled VLPs using the SpyTag/SpyCatcher technology. Rainbow trout were vaccinated/immunized with the VapA-VLP vaccines by intraperitoneal injection and were challenged with A. salmonicida 7 weeks later. The VLP vaccines provided protection comparable to that of a bacterin-based vaccine and antibody response analysis demonstrated that vaccinated fish mounted a strong VapA-specific antibody response. To our knowledge, this is the first demonstration of the potential use of antigen-decorated VLPs for vaccination against a bacterial disease in salmonids.


Subject(s)
Aeromonas salmonicida , Oncorhynchus mykiss , Animals , Capsid Proteins/genetics , Escherichia coli , Vaccination , Vaccines, Synthetic
10.
Lancet Microbe ; 4(3): e140-e148, 2023 03.
Article in English | MEDLINE | ID: mdl-36681093

ABSTRACT

BACKGROUND: Capsid virus-like particles (cVLP) have proven safe and immunogenic and can be a versatile platform to counter pandemics. We aimed to clinically test a modular cVLP COVID-19 vaccine in individuals who were naive to SARS-CoV-2. METHODS: In this phase 1, single-centre, dose-escalation, adjuvant-selection, open-label clinical trial, we recruited participants at the Radboud University Medical Center in Nijmegen, Netherlands, and sequentially assigned them to seven groups. Eligible participants were healthy, aged 18-55 years, and tested negative for SARS-CoV-2 and anti-SARS-CoV-2 antibodies. Participants were vaccinated intramuscularly on days 0 and 28 with 6 µg, 12 µg, 25 µg, 50 µg, or 70 µg of the cVLP-based COVID-19 vaccine (ABNCoV2). A subgroup received MF59-adjuvanted ABNCoV2. Follow-up was for 24 weeks after second vaccination. The primary objectives were to assess the safety and tolerability of ABNCoV2 and to identify a dose that optimises the tolerability-immunogenicity ratio 14 days after the first vaccination. The primary safety endpoint was the number of related grade 3 adverse events and serious adverse events in the intention-to-treat population. The primary immunogenicity endpoint was the concentration of ABNCoV2-specific antibodies. The trial is registered with ClinicalTrials.gov, NCT04839146. FINDINGS: 45 participants (six to nine per group) were enrolled between March 15 and July 15, 2021. Participants had a total of 249 at least possibly related solicited adverse events (185 grade 1, 63 grade 2, and one grade 3) within a week after vaccination. Two serious adverse events occurred; one was classified as a possible adverse reaction. Antibody titres were dose-dependent with levels plateauing at a vaccination dose of 25-70 µg ABNCoV2. After second vaccination, live virus neutralisation activity against major SARS-CoV-2 variants was high but was lower with an omicron (BA.1) variant. Vaccine-specific IFNγ+ CD4+ T cells were induced. INTERPRETATION: Immunisation with ABNCoV2 was well tolerated, safe, and resulted in a functional immune response. The data support the need for additional clinical development of ABNCoV2 as a second-generation SARS-CoV-2 vaccine. The modular cVLP platform will accelerate vaccine development, beyond SARS-CoV-2. FUNDING: EU, Carlsberg Foundation, and the Novo Nordisk Foundation.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Adjuvants, Immunologic , Capsid , Capsid Proteins , COVID-19 Vaccines , SARS-CoV-2 , Viral Vaccines/adverse effects
11.
NPJ Vaccines ; 7(1): 148, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36379958

ABSTRACT

Development of B-cell-based hepatitis C virus (HCV) vaccines that induce broadly neutralizing antibodies (bNAbs) is hindered by extensive sequence diversity and low immunogenicity of envelope glycoprotein vaccine candidates, most notably soluble E2 (sE2). To overcome this, we employed two-component approaches using self-assembling virus-like particles (cVLPs; component 1), displaying monomeric or oligomeric forms of HCV sE2 (sE2mono or sE2oligo; component 2). Immunization studies were performed in BALB/c mice and the neutralizing capacity of vaccine-induced antibodies was tested in cultured-virus-neutralizations, using HCV of genotypes 1-6. sE2-cVLP vaccines induced significantly higher levels of NAbs (p = 0.0065) compared to corresponding sE2 vaccines. Additionally, sE2oligo-cVLP was superior to sE2mono-cVLP in inducing bNAbs. Interestingly, human monoclonal antibody AR2A had reduced binding in ELISA to sE2oligo-cVLP compared with sE2mono-cVLP and competition ELISA using mouse sera from vaccinated animals indicated that sE2oligo-cVLP induced significantly less non-bNAbs AR2A (p = 0.0043) and AR1B (p = 0.017). Thus, cVLP-displayed oligomeric sE2 shows promise as an HCV vaccine candidate.

12.
Nanotechnology ; 33(48)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35882111

ABSTRACT

Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.


Subject(s)
HIV-1 , Nanoparticles , Vaccines , Animals , Broadly Neutralizing Antibodies , HEK293 Cells , Humans , Pilot Projects , Rabbits , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
14.
Pharmaceutics ; 14(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35745873

ABSTRACT

The requirement of an undisrupted cold chain during vaccine distribution is a major economic and logistical challenge limiting global vaccine access. Modular, nanoparticle-based platforms are expected to play an increasingly important role in the development of the next-generation vaccines. However, as with most vaccines, they are dependent on the cold chain in order to maintain stability and efficacy. Therefore, there is a pressing need to develop thermostable formulations that can be stored at ambient temperature for extended periods without the loss of vaccine efficacy. Here, we investigate the compatibility of the Tag/Catcher AP205 capsid virus-like particle (cVLP) vaccine platform with the freeze-drying process. Tag/Catcher cVLPs can be freeze-dried under diverse buffer and excipient conditions while maintaining their original biophysical properties. Additionally, we show that for two model cVLP vaccines, including a clinically tested SARS-CoV-2 vaccine, freeze-drying results in a product that once reconstituted retains the structural integrity and immunogenicity of the original material, even following storage under accelerated heat stress conditions. Furthermore, the freeze-dried SARS-CoV-2 cVLP vaccine is stable for up to 6 months at ambient temperature. Our study offers a potential solution to overcome the current limitations associated with the cold chain and may help minimize the need for low-temperature storage.

15.
Vaccines (Basel) ; 10(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35632584

ABSTRACT

Hypersensitivity to a contact allergen is one of the most abundant forms of inflammatory skin disease. Today, more than 20% of the general population are sensitized to one or more contact allergens, making this disease an important healthcare issue, as re-exposure to the allergen can initiate the clinical disease termed allergic contact dermatitis (ACD). The current standard treatment using corticosteroids is effective, but it has side effects when used for longer periods. Therefore, there is a need for new alternative therapies for severe ACD. In this study, we used the versatile Tag/Catcher AP205 capsid virus-like particle (cVLP) vaccine platform to develop an IL-1ß-targeted vaccine and to assess the immunogenicity and in vivo efficacy of the vaccine in a translational mouse model of ACD. We show that vaccination with cVLPs displaying full-length murine IL-1ß elicits high titers of neutralizing antibodies, leading to a significant reduction in local IL-1ß levels as well as clinical symptoms induced by treatment with 1-Fluoro-2,4-dinitrobenzene (DNFB). Moreover, we show that a single amino acid mutation in muIL-1ß reduces the biological activity while maintaining the ability to induce neutralizing antibodies. Collectively, the data suggest that a cVLP-based vaccine displaying full-length IL-1ß represents a promising vaccine candidate for use as an alternative treatment modality against severe ACD.

16.
Front Immunol ; 13: 857440, 2022.
Article in English | MEDLINE | ID: mdl-35479095

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic. Here, we present non-human primate immunogenicity and protective efficacy data generated with the capsid virus-like particle (cVLP)-based vaccine ABNCoV2 that has previously demonstrated immunogenicity in mice. In rhesus macaques, a single vaccination with either 15 or 100 µg ABNCoV2 induced binding and neutralizing antibodies in a dose-dependent manner, at levels comparable to those measured in human convalescents. A second vaccine administration led to a >50-fold increase in neutralizing antibodies, with 2-log higher mean levels in the 100-µg ABNCoV2 group compared with convalescent samples. Upon SARS-CoV-2 challenge, a significant reduction in viral load was observed for both vaccine groups relative to the challenge control group, with no evidence of enhanced disease. Remarkably, neutralizing antibody titers against an original SARS-CoV-2 isolate and against variants of concern were comparable, indicating a potential for broad protection afforded by ABNCoV2, which is currently in clinical testing.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Capsid , Capsid Proteins , Humans , Macaca mulatta , SARS-CoV-2
17.
Commun Biol ; 5(1): 123, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145226

ABSTRACT

Aggregation of the 140-residue protein α-synuclein (αSN) is a key factor in the etiology of Parkinson's disease. Although the intensely anionic C-terminal domain (CTD) of αSN does not form part of the amyloid core region or affect membrane binding ability, truncation or reduction of charges in the CTD promotes fibrillation through as yet unknown mechanisms. Here, we study stepwise truncated CTDs and identify a threshold region around residue 121; constructs shorter than this dramatically increase their fibrillation tendency. Remarkably, these effects persist even when as little as 10% of the truncated variant is mixed with the full-length protein. Increased fibrillation can be explained by a substantial increase in self-replication, most likely via fragmentation. Paradoxically, truncation also suppresses toxic oligomer formation, and oligomers that can be formed by chemical modification show reduced membrane affinity and cytotoxicity. These remarkable changes correlate to the loss of negative electrostatic potential in the CTD and highlight a double-edged electrostatic safety guard.


Subject(s)
Parkinson Disease , alpha-Synuclein , Amyloid/metabolism , Humans , Membranes/metabolism , Parkinson Disease/metabolism , Static Electricity , alpha-Synuclein/metabolism
19.
Vaccines (Basel) ; 11(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36679847

ABSTRACT

Administration of PCSK9-specific monoclonal antibodies, as well as peptide-based PCSK9 vaccines, can lower plasma LDL cholesterol by blocking PCSK9. However, these treatments also cause an increase in plasma PCSK9 levels, presumably due to the formation of immune complexes. Here, we utilize a versatile capsid virus-like particle (cVLP)-based vaccine platform to deliver both full-length (FL) PCSK9 and PCSK9-derived peptide antigens, to investigate whether induction of a broader polyclonal anti-PCSK9 antibody response would mediate more efficient clearance of plasma PCSK9. This head-to-head immunization study reveals a significantly increased capacity of the FL PCSK9 cVLP vaccine to opsonize and clear plasma PCSK9. These findings may have implications for the design of PCSK9 and other vaccines that should effectively mediate opsonization and immune clearance of target antigens.

20.
Front Immunol ; 12: 743890, 2021.
Article in English | MEDLINE | ID: mdl-34950134

ABSTRACT

Background: Both anti-viral and anti-inflammatory bronchial effects are warranted to treat viral infections in asthma. We sought to investigate if imiquimod, a TLR7 agonist, exhibits such dual actions in ex vivo cultured human bronchial epithelial cells (HBECs), targets for SARS-CoV-2 infectivity. Objective: To investigate bronchial epithelial effects of imiquimod of potential importance for anti-viral treatment in asthmatic patients. Methods: Effects of imiquimod alone were examined in HBECs from healthy (N=4) and asthmatic (N=18) donors. Mimicking SARS-CoV-2 infection, HBECs were stimulated with poly(I:C), a dsRNA analogue, or SARS-CoV-2 spike-protein 1 (SP1; receptor binding) with and without imiquimod treatment. Expression of SARS-CoV-2 receptor (ACE2), pro-inflammatory and anti-viral cytokines were analyzed by RT-qPCR, multiplex ELISA, western blot, and Nanostring and proteomic analyses. Results: Imiquimod reduced ACE2 expression at baseline and after poly(I:C) stimulation. Imiquimod also reduced poly(I:C)-induced pro-inflammatory cytokines including IL-1ß, IL-6, IL-8, and IL-33. Furthermore, imiquimod increased IFN-ß expression, an effect potentiated in presence of poly(I:C) or SP1. Multiplex mRNA analysis verified enrichment in type-I IFN signaling concomitant with suppression of cytokine signaling pathways induced by imiquimod in presence of poly(I:C). Exploratory proteomic analyses revealed potentially protective effects of imiquimod on infections. Conclusion: Imiquimod triggers viral resistance mechanisms in HBECs by decreasing ACE2 and increasing IFN-ß expression. Additionally, imiquimod improves viral infection tolerance by reducing viral stimulus-induced epithelial cytokines involved in severe COVID-19 infection. Our imiquimod data highlight feasibility of producing pluripotent drugs potentially suited for anti-viral treatment in asthmatic subjects.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Asthma , COVID-19 , Imiquimod/pharmacology , Interferon-beta/drug effects , Respiratory Mucosa/drug effects , Adjuvants, Immunologic/pharmacology , Adult , Aged , Bronchi/drug effects , Bronchi/immunology , Bronchi/virology , Cells, Cultured , Female , Humans , Interferon-beta/immunology , Male , Middle Aged , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL