Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Exp Med ; 221(2)2024 Feb 05.
Article En | MEDLINE | ID: mdl-38226976

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.


CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic , Humans , ErbB Receptors , Adipose Tissue , Cell Cycle
2.
Bio Protoc ; 12(23)2022 Dec 05.
Article En | MEDLINE | ID: mdl-36561116

Graft-versus-host disease (GvHD) is a significant complication of allogeneic hematopoietic stem cell transplantation. In order to develop new therapeutic approaches, there is a need to recapitulate GvHD effects in pre-clinical, in vivo systems, such as mouse and humanized mouse models. In humanized mouse models of GvHD, mice are reconstituted with human immune cells, which become activated by xenogeneic (xeno) stimuli, causing a multi-system disorder known as xenoGvHD. Testing the ability of new therapies to prevent or delay the development of xenoGvHD is often used as pre-clinical, proof-of-concept data, creating the need for standardized methodology to induce, monitor, and report xenoGvHD. Here, we describe detailed methods for how to induce xenoGvHD by injecting human peripheral blood mononuclear cells into immunodeficient NOD SCID gamma mice. We provide comprehensive details on methods for human T cell preparation and injection, mouse monitoring, data collection, interpretation, and reporting. Additionally, we provide an example of the potential utility of the xenoGvHD model to assess the biological activity of a regulatory T-cell therapy. Use of this protocol will allow better standardization of this model and comparison of datasets across different studies. Graft-versus-host disease (GvHD) is a significant complication of allogeneic hematopoietic stem cell transplantation. In order to develop new therapeutic approaches, there is a need to recapitulate GvHD effects in pre-clinical, in vivo systems, such as mouse and humanized mouse models. In humanized mouse models of GvHD, mice are reconstituted with human immune cells, which become activated by xenogeneic (xeno) stimuli, causing a multi-system disorder known as xenoGvHD. Testing the ability of new therapies to prevent or delay the development of xenoGvHD is often used as pre-clinical, proof-of-concept data, creating the need for standardized methodology to induce, monitor, and report xenoGvHD. Here, we describe detailed methods for how to induce xenoGvHD by injecting human peripheral blood mononuclear cells into immunodeficient NOD SCID gamma mice. We provide comprehensive details on methods for human T cell preparation and injection, mouse monitoring, data collection, interpretation, and reporting. Additionally, we provide an example of the potential utility of the xenoGvHD model to assess the biological activity of a regulatory T-cell therapy. Use of this protocol will allow better standardization of this model and comparison of datasets across different studies. This protocol was validated in: Sci Transl Med (2020), DOI: 10.1126/scitranslmed.aaz3866 Graphical abstract.

3.
Immunity ; 54(4): 702-720.e17, 2021 04 13.
Article En | MEDLINE | ID: mdl-33789089

Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.


Chromatin/immunology , T-Lymphocytes, Regulatory/immunology , Wound Healing/immunology , Adult , Animals , Basic-Leucine Zipper Transcription Factors/immunology , Cell Differentiation/immunology , Cell Line , Female , Gene Expression Profiling/methods , Gene Expression Regulation/immunology , HaCaT Cells , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Receptors, CCR8/immunology , T Follicular Helper Cells/immunology
4.
Immunity ; 52(2): 295-312.e11, 2020 02 18.
Article En | MEDLINE | ID: mdl-31924477

Specialized regulatory T (Treg) cells accumulate and perform homeostatic and regenerative functions in nonlymphoid tissues. Whether common precursors for nonlymphoid-tissue Treg cells exist and how they differentiate remain elusive. Using transcription factor nuclear factor, interleukin 3 regulated (Nfil3) reporter mice and single-cell RNA-sequencing (scRNA-seq), we identified two precursor stages of interleukin 33 (IL-33) receptor ST2-expressing nonlymphoid tissue Treg cells, which resided in the spleen and lymph nodes. Global chromatin profiling of nonlymphoid tissue Treg cells and the two precursor stages revealed a stepwise acquisition of chromatin accessibility and reprogramming toward the nonlymphoid-tissue Treg cell phenotype. Mechanistically, we identified and validated the transcription factor Batf as the driver of the molecular tissue program in the precursors. Understanding this tissue development program will help to harness regenerative properties of tissue Treg cells for therapy.


Basic-Leucine Zipper Transcription Factors/metabolism , Lymph Nodes/immunology , Spleen/immunology , T-Lymphocytes, Regulatory/cytology , Adoptive Transfer , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Cell Differentiation/genetics , Chromatin/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Expression Profiling , Gene Expression Regulation/immunology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Mice , Organ Specificity/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , T-Lymphocytes, Regulatory/metabolism
...