Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Phys Chem Chem Phys ; 26(26): 18256-18265, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38904382

ABSTRACT

Alkynyl radicals and cations are crucial reactive intermediates in chemistry, but often evade direct detection. Herein, we report the direct observation of the phenylethynyl radical (C6H5CC˙) and its cation (C6H5CC+), which are two of the most reactive intermediates in organic chemistry. The radical is generated via pyrolysis of (bromoethynyl)benzene at temperatures above 1500 K and is characterized by photoion mass-selected threshold photoelectron spectroscopy (ms-TPES). Photoionization of the phenylethynyl radical yields the phenylethynyl cation, which has never been synthesized due to its extreme electrophilicity. Vibrationally-resolved ms-TPES assisted by ab initio calculations unveiled the complex electronic structure of the phenylethynyl cation, which appears at an adiabatic ionization energy (AIE) of 8.90 ± 0.05 eV and exhibits an uncommon triplet (3B1) ground state, while the closed-shell singlet (1A1) state lies just 2.8 kcal mol-1 (0.12 eV) higher in energy. The reactive phenylethynyl radical abstracts hydrogen to form ethynylbenzene (C6H5CCH) but also isomerizes via H-shift to the o-, m-, and p-ethynylphenyl isomers (C6H4CCH). These radicals are very reactive and undergo ring-opening followed by H-loss to form a mixture of C8H4 triynes, along with low yields of cyclic 3- and 4-ethynylbenzynes (C6H3CCH). At higher temperatures, dehydrogenation from the unbranched C8H4 triynes forms the linear tetraacetylene (C8H2), an astrochemically relevant polyyne.

2.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587076

ABSTRACT

BACKGROUNDDiagnosis of PMM2-CDG, the most common congenital disorder of glycosylation (CDG), relies on measuring carbohydrate-deficient transferrin (CDT) and genetic testing. CDT tests have false negatives and may normalize with age. Site-specific changes in protein N-glycosylation have not been reported in sera in PMM2-CDG.METHODSUsing multistep mass spectrometry-based N-glycoproteomics, we analyzed sera from 72 individuals to discover and validate glycopeptide alterations. We performed comprehensive tandem mass tag-based discovery experiments in well-characterized patients and controls. Next, we developed a method for rapid profiling of additional samples. Finally, targeted mass spectrometry was used for validation in an independent set of samples in a blinded fashion.RESULTSOf the 3,342 N-glycopeptides identified, patients exhibited decrease in complex-type N-glycans and increase in truncated, mannose-rich, and hybrid species. We identified a glycopeptide from complement C4 carrying the glycan Man5GlcNAc2, which was not detected in controls, in 5 patients with normal CDT results, including 1 after liver transplant and 2 with a known genetic variant associated with mild disease, indicating greater sensitivity than CDT. It was detected by targeted analysis in 2 individuals with variants of uncertain significance in PMM2.CONCLUSIONComplement C4-derived Man5GlcNAc2 glycopeptide could be a biomarker for accurate diagnosis and therapeutic monitoring of patients with PMM2-CDG and other CDGs.FUNDINGU54NS115198 (Frontiers in Congenital Disorders of Glycosylation: NINDS; NCATS; Eunice Kennedy Shriver NICHD; Rare Disorders Consortium Disease Network); K08NS118119 (NINDS); Minnesota Partnership for Biotechnology and Medical Genomics; Rocket Fund; R01DK099551 (NIDDK); Mayo Clinic DERIVE Office; Mayo Clinic Center for Biomedical Discovery; IA/CRC/20/1/600002 (Center for Rare Disease Diagnosis, Research and Training; DBT/Wellcome Trust India Alliance).


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases)/deficiency , Humans , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Complement C4 , Glycopeptides , Biomarkers , Polysaccharides
3.
Clin Proteomics ; 20(1): 56, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053024

ABSTRACT

BACKGROUND: Cell surface proteins perform critical functions related to immune response, signal transduction, cell-cell interactions, and cell migration. Expression of specific cell surface proteins can determine cell-type identity, and can be altered in diseases including infections, cancer and genetic disorders. Identification of the cell surface proteome remains a challenge despite several enrichment methods exploiting their biochemical and biophysical properties. METHODS: Here, we report a novel method for enrichment of proteins localized to cell surface. We developed this new approach designated surface Biotinylation Site Identification Technology (sBioSITe) by adapting our previously published method for direct identification of biotinylated peptides. In this strategy, the primary amine groups of lysines on proteins on the surface of live cells are first labeled with biotin, and subsequently, biotinylated peptides are enriched by anti-biotin antibodies and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: By direct detection of biotinylated lysines from PC-3, a prostate cancer cell line, using sBioSITe, we identified 5851 peptides biotinylated on the cell surface that were derived from 1409 proteins. Of these proteins, 533 were previously shown or predicted to be localized to the cell surface or secreted extracellularly. Several of the identified cell surface markers have known associations with prostate cancer and metastasis including CD59, 4F2 cell-surface antigen heavy chain (SLC3A2) and adhesion G protein-coupled receptor E5 (CD97). Importantly, we identified several biotinylated peptides derived from plectin and nucleolin, both of which are not annotated in surface proteome databases but have been shown to have aberrant surface localization in certain cancers highlighting the utility of this method. CONCLUSIONS: Detection of biotinylation sites on cell surface proteins using sBioSITe provides a reliable method for identifying cell surface proteins. This strategy complements existing methods for detection of cell surface expressed proteins especially in discovery-based proteomics approaches.

4.
Phys Chem Chem Phys ; 25(45): 31146-31152, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37947458

ABSTRACT

2-Cyanoindene has recently been identified in the interstellar medium, however current models cannot fully account for its formation pathways. Herein, we identify and characterize 2-naphthylnitrene, which is prone to rearrange to 2- and 3-cyanoindene, in the gas phase using photoion mass-selective threshold photoelectron spectroscopy (ms-TPES). The adiabatic ionization energies (AIE) of triplet nitrene (3A'') to the radical cation in its lowest-energy doublet X̃+(2A') and quartet ã+(4A') electronic states were determined to be 7.72 ± 0.02 and 8.64 ± 0.02 eV, respectively, leading to a doublet-quartet energy splitting (ΔED-Q) of 0.92 eV (88.8 kJ mol-1). A ring-contraction mechanism yields 3-cyanoindene, which is selectively formed under mild pyrolysis conditions (800 K), while the lowest-energy isomer, 2-cyanoindene, is also observed under harsh pyrolysis conditions at 1100 K. The isomer-selective assignment was rationalized by Franck-Condon spectral modeling and by measuring the AIEs at 8.64 ± 0.02 and 8.70 ± 0.02 eV for 2- and 3-cyanoindene, respectively, in good agreement with quantum chemical calculations.

5.
J Phys Chem A ; 127(41): 8574-8583, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37734109

ABSTRACT

The thermal decomposition of 2- and 4-iodobenzyl iodide at high temperatures was investigated by mass-selective threshold photoelectron spectroscopy (ms-TPES) in the gas phase, as well as by matrix isolation infrared spectroscopy in cryogenic matrices. Scission of the benzylic C-I bond in the precursors at 850 K affords 2- and 4-iodobenzyl radicals (ortho- and para-IC6H4CH2•), respectively, in high yields. The adiabatic ionization energies of ortho-IC6H4CH2• to the X̃+(1A') and ã+(3A') cation states were determined to be 7.31 ± 0.01 and 8.78 ± 0.01 eV, whereas those of para-IC6H4CH2• were measured to be 7.17 ± 0.01 eV for X̃+(1A1) and 8.98 ± 0.01 eV for ã+(3A1). Vibrational frequencies of the ring breathing mode were measured to be 560 ± 80 and 240 ± 80 cm-1 for the X̃+(1A') and ã+(3A') cation states of ortho-IC6H4CH2•, respectively. At higher temperatures, subsequent aryl C-I cleavage takes place to form α,2- and α,4-didehydrotoluene diradicals, which rapidly undergo ring contraction to a stable product, fulvenallene. Nevertheless, the most intense vibrational bands of the elusive α,2- and α,4-didehydrotoluene diradicals were observed in the Ar matrices. In addition, high-energy and astrochemically relevant C7H6 isomers 1-, 2-, and 5-ethynylcyclopentadiene are observed at even higher pyrolysis temperatures along with fulvenallene. Complementary quantum chemical computations on the C7H6 potential energy surface predict a feasible reaction cascade at high temperatures from the diradicals to fulvenallene, supporting the experimental observations in both the gas phase and cryogenic matrices.

6.
J Inherit Metab Dis ; 46(1): 76-91, 2023 01.
Article in English | MEDLINE | ID: mdl-36102038

ABSTRACT

Congenital disorders of glycosylation are genetic disorders that occur due to defects in protein and lipid glycosylation pathways. A deficiency of N-glycanase 1, encoded by the NGLY1 gene, results in a congenital disorder of deglycosylation. The NGLY1 enzyme is mainly involved in cleaving N-glycans from misfolded, retro-translocated glycoproteins in the cytosol from the endoplasmic reticulum before their proteasomal degradation or activation. Despite the essential role of NGLY1 in deglycosylation pathways, the exact consequences of NGLY1 deficiency on global cellular protein glycosylation have not yet been investigated. We undertook a multiplexed tandem mass tags-labeling-based quantitative glycoproteomics and proteomics analysis of fibroblasts from NGLY1-deficient individuals carrying different biallelic pathogenic variants in NGLY1. This quantitative mass spectrometric analysis detected 8041 proteins and defined a proteomic signature of differential expression across affected individuals and controls. Proteins that showed significant differential expression included phospholipid phosphatase 3, stromal cell-derived factor 1, collagen alpha-1 (IV) chain, hyaluronan and proteoglycan link protein 1, and thrombospondin-1. We further detected a total of 3255 N-glycopeptides derived from 550 glycosylation sites of 407 glycoproteins by multiplexed N-glycoproteomics. Several extracellular matrix glycoproteins and adhesion molecules showed altered abundance of N-glycopeptides. Overall, we observed distinct alterations in specific glycoproteins, but our data revealed no global accumulation of glycopeptides in the patient-derived fibroblasts, despite the genetic defect in NGLY1. Our findings highlight new molecular and system-level insights for understanding NGLY1-CDDG.


Subject(s)
Congenital Disorders of Glycosylation , Proteomics , Humans , Glycosylation , Glycoproteins/genetics , Glycoproteins/metabolism , Fibroblasts/metabolism , Glycopeptides/metabolism , Congenital Disorders of Glycosylation/metabolism
7.
Front Cell Dev Biol ; 10: 979096, 2022.
Article in English | MEDLINE | ID: mdl-36393834

ABSTRACT

Saul-Wilson syndrome is a rare skeletal dysplasia caused by a heterozygous mutation in COG4 (p.G516R). Our previous study showed that this mutation affected glycosylation of proteoglycans and disturbed chondrocyte elongation and intercalation in zebrafish embryos expressing the COG4p.G516R variant. How this mutation causes chondrocyte deficiencies remain unsolved. To analyze a disease-relevant cell type, COG4p.G516R variant was generated by CRISPR knock-in technique in the chondrosarcoma cell line SW1353 to study chondrocyte differentiation and protein secretion. COG4p.G516R cells display impaired protein trafficking and altered COG complex size, similar to SWS-derived fibroblasts. Both SW1353 and HEK293T cells carrying COG4p.G516R showed very modest, cell-type dependent changes in N-glycans. Using 3D culture methods, we found that cells carrying the COG4p.G516R variant made smaller spheroids and had increased apoptosis, indicating impaired in vitro chondrogenesis. Adding WT cells or their conditioned medium reduced cell death and increased spheroid sizes of COG4p.G516R mutant cells, suggesting a deficiency in secreted matrix components. Mass spectrometry-based secretome analysis showed selectively impaired protein secretion, including MMP13 and IGFBP7 which are involved in chondrogenesis and osteogenesis. We verified reduced expression of chondrogenic differentiation markers, MMP13 and COL10A1 and delayed response to BMP2 in COG4p.G516R mutant cells. Collectively, our results show that the Saul-Wilson syndrome COG4p.G516R variant selectively affects the secretion of multiple proteins, especially in chondrocyte-like cells which could further cause pleiotropic defects including hampering long bone growth in SWS individuals.

8.
J Proteins Proteom ; 13(4): 187-203, 2022.
Article in English | MEDLINE | ID: mdl-36213313

ABSTRACT

Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix components composed of linear glycosaminoglycan (GAG) side chains attached to a core protein. CSPGs play a vital role in neurodevelopment, signal transduction, cellular proliferation and differentiation and tumor metastasis through interaction with growth factors and signaling proteins. These pleiotropic functions of proteoglycans are regulated spatiotemporally by the GAG chains attached to the core protein. There are over 70 chondroitin sulfate-linked proteoglycans reported in cells, cerebrospinal fluid and urine. A core glycan linker of 3-6 monosaccharides attached to specific serine residues can be extended by 20-200 disaccharide repeating units making intact CSPGs very large and impractical to analyze. The current paradigm of CSPG analysis involves digesting the GAG chains by chondroitinase enzymes and analyzing either the protein part, the disaccharide repeats, or both by mass spectrometry. This method, however, provides no information about the site of attachment or the composition of linker oligosaccharides and the degree of sulfation and/or phosphorylation. Further, the analysis by mass spectrometry and subsequent identification of novel CSPGs is hampered by technical challenges in their isolation, less optimal ionization and data analysis. Unknown identity of the linker oligosaccharide also makes it more difficult to identify the glycan composition using database searching approaches. Following chondroitinase digestion of long GAG chains linked to tryptic peptides, we identified intact GAG-linked peptides in clinically relevant samples including plasma, urine and dermal fibroblasts. These intact glycopeptides including their core linker glycans were identified by mass spectrometry using optimized stepped higher energy collision dissociation and electron-transfer/higher energy collision dissociation combined with hybrid database search/de novo glycan composition search. We identified 25 CSPGs including three novel CSPGs that have not been described earlier. Our findings demonstrate the utility of combining enrichment strategies and optimized high-resolution mass spectrometry analysis including alternative fragmentation methods for the characterization of CSPGs. Supplementary Information: The online version contains supplementary material available at 10.1007/s42485-022-00092-3.

9.
Front Cell Dev Biol ; 10: 967482, 2022.
Article in English | MEDLINE | ID: mdl-36158187

ABSTRACT

Cells shape their extracellular milieu by secreting intracellular products into the environment including extracellular vesicles which are lipid-bilayer limited membrane particles. These vesicles carry out a range of functions, including regulation of coagulation, via multiple contributor mechanisms. Urinary extracellular vesicles are secreted by various cells, lining the urinary space, including the nephron and bladder. They are known to have procoagulant properties, however, the details of this function, beyond tissue factor are not well known. The aim of the study was to access the role of urinary extracellular vesicles in impacting coagulation upon supplementation to plasma. This could indicate their physiological function upon kidney injury or pathology. Supplementation to standard human plasma and plasmas deficient in various coagulation factors was used for this purpose, and calibrated automated thrombogram (CAT®) was the major technique applied. We found that these vesicles contain multiple coagulation-related factors, and their lipid composition affects coagulation activities of plasma upon supplementation. Remarkably, these vesicles can restore thrombin generation in FVII, FVIII, FIX and FXI -deficient plasmas. This study explores the multiple roles of urinary extracellular vesicles in coagulation in in vitro blood coagulation and implies their importance in its regulation by several mechanisms.

10.
PLoS One ; 17(8): e0272810, 2022.
Article in English | MEDLINE | ID: mdl-36006970

ABSTRACT

BACKGROUND: Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by biliary strictures, cholestasis, and a markedly increased risk of cholangiocarcinoma. New markers for the screening and differential diagnosis of PSC are needed. In this pilot study, we have analyzed both the bile and serum proteomic profiles of 80 PSC patients and non-PSC controls (n = 6 for bile and n = 18 for serum). AIM: The aim of this study was to discover candidates for new biomarkers for the differential diagnosis of PSC. METHODS: Bile and serum samples were processed and subsequently analyzed using ultra performance liquid chromatography-ultra definition mass spectrometry (UPLC-UDMSE). Further analysis included statistical analyses such as receiver operating characteristic curve analysis as well as pathway analysis using Ingenuity Pathway Analysis. RESULTS AND CONCLUSIONS: In bile, we discovered 64 proteins with significantly different levels between the groups, with fold changes of up to 129. In serum, we discovered 112 proteins with significantly different levels. Receiver operating characteristic curve analysis found multiple proteins with high area under the curve values, up to 0.942, indicating that these serum proteins are of value as new non-invasive classifiers of PSC. Pathway analysis revealed multiple canonical pathways that were enriched in the dataset, which have roles in bile homeostasis and metabolism. We present several serum proteins that could serve as new blood-based markers for the diagnosis of PSC after further validation. The measurement of serum levels of these proteins could be of use in the screening of patients with suspected PSC.


Subject(s)
Bile Duct Neoplasms , Cholangitis, Sclerosing , Bile/metabolism , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/pathology , Biomarkers , Cholangitis, Sclerosing/pathology , Diagnosis, Differential , Humans , Pilot Projects , Proteomics
11.
Lancet Digit Health ; 4(9): e632-e645, 2022 09.
Article in English | MEDLINE | ID: mdl-35835712

ABSTRACT

BACKGROUND: COVID-19 is a multi-system disorder with high variability in clinical outcomes among patients who are admitted to hospital. Although some cytokines such as interleukin (IL)-6 are believed to be associated with severity, there are no early biomarkers that can reliably predict patients who are more likely to have adverse outcomes. Thus, it is crucial to discover predictive markers of serious complications. METHODS: In this retrospective cohort study, we analysed samples from 455 participants with COVID-19 who had had a positive SARS-CoV-2 RT-PCR result between April 14, 2020, and Dec 1, 2020 and who had visited one of three Mayo Clinic sites in the USA (Minnesota, Arizona, or Florida) in the same period. These participants were assigned to three subgroups depending on disease severity as defined by the WHO ordinal scale of clinical improvement (outpatient, severe, or critical). Our control cohort comprised of 182 anonymised age-matched and sex-matched plasma samples that were available from the Mayo Clinic Biorepository and banked before the COVID-19 pandemic. We did a deep profiling of circulatory cytokines and other proteins, lipids, and metabolites from both cohorts. Most patient samples were collected before, or around the time of, hospital admission, representing ideal samples for predictive biomarker discovery. We used proximity extension assays to quantify cytokines and circulatory proteins and tandem mass spectrometry to measure lipids and metabolites. Biomarker discovery was done by applying an AutoGluon-tabular classifier to a multiomics dataset, producing a stacked ensemble of cutting-edge machine learning algorithms. Global proteomics and glycoproteomics on a subset of patient samples with matched pre-COVID-19 plasma samples was also done. FINDINGS: We quantified 1463 cytokines and circulatory proteins, along with 902 lipids and 1018 metabolites. By developing a machine-learning-based prediction model, a set of 102 biomarkers, which predicted severe and clinical COVID-19 outcomes better than the traditional set of cytokines, were discovered. These predictive biomarkers included several novel cytokines and other proteins, lipids, and metabolites. For example, altered amounts of C-type lectin domain family 6 member A (CLEC6A), ether phosphatidylethanolamine (P-18:1/18:1), and 2-hydroxydecanoate, as reported here, have not previously been associated with severity in COVID-19. Patient samples with matched pre-COVID-19 plasma samples showed similar trends in muti-omics signatures along with differences in glycoproteomics profile. INTERPRETATION: A multiomic molecular signature in the plasma of patients with COVID-19 before being admitted to hospital can be exploited to predict a more severe course of disease. Machine learning approaches can be applied to highly complex and multidimensional profiling data to reveal novel signatures of clinical use. The absence of validation in an independent cohort remains a major limitation of the study. FUNDING: Eric and Wendy Schmidt.


Subject(s)
COVID-19 , Biomarkers , COVID-19/diagnosis , Cohort Studies , Cytokines , Humans , Lipidomics/methods , Lipids , Metabolomics/methods , Pandemics , Prognosis , Proteomics/methods , Retrospective Studies , SARS-CoV-2
12.
Proteomics ; 22(19-20): e2200077, 2022 10.
Article in English | MEDLINE | ID: mdl-35689797

ABSTRACT

PIK3CA is one of the most frequently mutated genes in human cancers, with the two most prevalent activating mutations being E545K and H1047R. Although the altered intracellular signaling pathways in these cells have been described, the effect of these mutations on their extracellular vesicles (EVs) has not yet been reported. To study altered cellular physiology and intercellular communication through proteomic analysis of EVs, MCF10A cells and their isogenic mutant versions (PIK3CA E545K and H1047R) were cultured and their EVs enriched by differential ultracentrifugation. Proteins were extracted, digested with trypsin and the peptides labeled with tandem mass tag (TMT) reagents and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Four thousand six hundred and fifty-five peptides were identified from 579 proteins of which 522 proteins have been previously described in EVs. Relative quantitation revealed altered levels of EV proteins including several cell adhesion molecules. Mesothelin, E-cadherin, and epithelial cell adhesion molecule were elevated in both mutant cell-derived EVs. Markers of tumor invasion and progression like galectin-3 and transforming growth factor beta induced protein were increased in both mutants. Overall, activating mutations in PIK3CA result in altered EV composition with characteristic changes associated with these hotspot mutations.


Subject(s)
Extracellular Vesicles , Proteomics , Humans , Proteomics/methods , Chromatography, Liquid/methods , Tandem Mass Spectrometry , Trypsin/metabolism , Epithelial Cell Adhesion Molecule/analysis , Epithelial Cell Adhesion Molecule/metabolism , Galectin 3/analysis , Galectin 3/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Cadherins/metabolism , Transforming Growth Factor beta/metabolism
13.
Org Biomol Chem ; 20(26): 5284-5292, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35713091

ABSTRACT

We report the design, synthesis, and study of light-induced shape-changing azomacrocycles. These systems have been incorporated with azobenzene photoswitches using alkoxy tethers and triazole units to afford flexibility and binding. We envision that such azomacrocycles are capable of reversibly binding with the guest molecule. Remarkably, we have demonstrated fully light-controlled fluorescence quenching and enhancement in the monomeric emission of pyrene (guest). Such modulations have been achieved by the photoisomerization of the azomacrocycle and, in turn, host-guest interactions. Also, the azomacrocycles tend to aggregate and can also be controlled by light or heat. We uncovered such phenomena using spectroscopic, microscopic, and isothermal titration calorimetry (ITC) studies and computations.


Subject(s)
Pyrenes , Calorimetry/methods , Spectrometry, Fluorescence/methods
14.
PLoS One ; 17(5): e0267967, 2022.
Article in English | MEDLINE | ID: mdl-35559953

ABSTRACT

The prevalence of allergic diseases and asthma is increasing rapidly worldwide, with environmental and lifestyle behaviors implicated as a reason. Epidemiological studies have shown that children who grow up on farms are at lower risk of developing childhood atopic disease, indicating the presence of a protective "farm effect". The Old Order Mennonite (OOM) community in Upstate New York have traditional, agrarian lifestyles, a low rate of atopic disease, and long periods of exclusive breastfeeding. Human milk proteins are heavily glycosylated, although there is a paucity of studies investigating the milk glycoproteome. In this study, we have used quantitative glycoproteomics to compare the N-glycoprotein profiles of 54 milk samples from Rochester urban/suburban and OOM mothers, two populations with different lifestyles, exposures, and risk of atopic disease. We also compared N-glycoprotein profiles according to the presence or absence of atopic disease in the mothers and, separately, the children. We identified 79 N-glycopeptides from 15 different proteins and found that proteins including immunoglobulin A1, polymeric immunoglobulin receptor, and lactotransferrin displayed significant glycan heterogeneity. We found that the abundances of 38 glycopeptides differed significantly between Rochester and OOM mothers and also identified four glycopeptides with significantly different abundances between all comparisons. These four glycopeptides may be associated with the development of atopic disease. The findings of this study suggest that the differential glycosylation of milk proteins could be linked to atopic disease.


Subject(s)
Breast Feeding , Hypersensitivity, Immediate , Milk, Human , Child , Ethnicity , Female , Glycopeptides , Glycoproteins , Humans , Hypersensitivity, Immediate/epidemiology , Life Style , Milk Proteins , Milk, Human/chemistry , New York , Proteomics
15.
ACS Omega ; 7(13): 11023-11032, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35415375

ABSTRACT

Glycoproteomics, or the simultaneous characterization of glycans and their attached peptides, is increasingly being employed to generate catalogs of glycopeptides on a large scale. Nevertheless, quantitative glycoproteomics remains challenging even though isobaric tagging reagents such as tandem mass tags (TMT) are routinely used for quantitative proteomics. Here, we present a workflow that combines the enrichment or fractionation of TMT-labeled glycopeptides with size-exclusion chromatography (SEC) for an in-depth and quantitative analysis of the glycoproteome. We applied this workflow to study the cellular glycoproteome of an isogenic mammary epithelial cell system that recapitulated oncogenic mutations in the PIK3CA gene, which codes for the phosphatidylinositol-3-kinase catalytic subunit. As compared to the parental cells, cells with mutations in exon 9 (E545K) or exon 20 (H1047R) of the PIK3CA gene exhibited site-specific glycosylation alterations in 464 of the 1999 glycopeptides quantified. Our strategy led to the discovery of site-specific glycosylation changes in PIK3CA mutant cells in several important receptors, including cell adhesion proteins such as integrin ß-6 and CD166. This study demonstrates that the SEC-based enrichment of glycopeptides is a simple and robust method with minimal sample processing that can easily be coupled with TMT-labeling for the global quantitation of glycopeptides.

16.
J Phys Chem A ; 126(4): 557-567, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35049300

ABSTRACT

We report matrix isolation infrared spectroscopic studies to characterize 3,6-didehydropyridazine 6, a heterocyclic analogue of para benzyne, combined with computations. In this regard, we have utilized 3,6-diiodopyridazine 11 as a photolytic precursor. The experiments toward the generation of the biradical are carried out in argon and nitrogen matrices at 4 K. Instead of the elusive biradical, we have observed a ring-opening product maleonitrile (Z)-7 upon irradiation at 254 nm. In contrast, prolonged irradiation at 254 nm leads only to Z-E isomerization, forming fumaronitrile (E)-7. The mechanistic aspects of ring-opening, product selectivity, and Z-E photoisomerization steps have been investigated in detail using high-level ab initio computations. These studies have found that 3,6-didehydropyridazine 6 is an untraceable intermediate, and the ring-opening step leading to maleonitrile is barrierless. In addition, we have proposed the involvement of the S1 (π-π*) state via conical intersection in the Z-E photoisomerization of maleonitrile.

17.
J Heart Lung Transplant ; 41(3): 311-324, 2022 03.
Article in English | MEDLINE | ID: mdl-34933799

ABSTRACT

BACKGROUND: The pathophysiological changes related to brain death may affect the quality of the transplanted organs and expose the recipients to risks. We probed systemic changes reflected in donor plasma proteome and investigated their relationship to heart transplant outcomes. METHODS: Plasma samples from brain-dead multi-organ donors were analyzed by label-free protein quantification using high-definition mass spectrometry. Unsupervised and supervised statistical models were used to determine proteome differences between brain-dead donors and healthy controls. Proteome variation and the corresponding biological pathways were analyzed and correlated with transplant outcomes. RESULTS: Statistical models revealed that donors had a unique but heterogeneous plasma proteome with 237 of 463 proteins being changed compared to controls. Pathway analysis showed that coagulation, gluconeogenesis, and glycolysis pathways were upregulated in donors, while complement, LXR/RXR activation, and production of nitric oxide and reactive oxygen species in macrophages pathways were downregulated. In point-biserial correlation analysis, lysine-specific demethylase 3A was moderately correlated with any grade and severe PGD. In univariate and multivariate Cox regression analyses myosin Va and proteasome activator complex subunit 2 were significantly associated with the development of acute rejections with hemodynamic compromise within 30 days. Finally, we found that elevated levels of lysine-specific demethylase 3A and moesin were identified as predictors for graft-related 1-year mortality in univariate analysis. CONCLUSIONS: We show that brain death significantly changed plasma proteome signature Donor plasma protein changes related to endothelial cell and cardiomyocyte function, inflammation, and vascular growth and arteriogenesis could predict transplant outcome suggesting a role in donor evaluation.


Subject(s)
Brain Death/blood , Heart Transplantation , Proteome/analysis , Adult , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Treatment Outcome
18.
Front Cell Dev Biol ; 9: 735001, 2021.
Article in English | MEDLINE | ID: mdl-34805145

ABSTRACT

Extracellular vesicles (EVs) are emerging mediators of intercellular communication in nonalcoholic steatohepatitis (NASH). Palmitate, a lipotoxic saturated fatty acid, activates hepatocellular endoplasmic reticulum stress, which has been demonstrated to be important in NASH pathogenesis, including in the release of EVs. We have previously demonstrated that the release of palmitate-stimulated EVs is dependent on the de novo synthesis of ceramide, which is trafficked by the ceramide transport protein, STARD11. The trafficking of ceramide is a critical step in the release of lipotoxic EVs, as cells deficient in STARD11 do not release palmitate-stimulated EVs. Here, we examined the hypothesis that protein cargoes are trafficked to lipotoxic EVs in a ceramide-dependent manner. We performed quantitative proteomic analysis of palmitate-stimulated EVs in control and STARD11 knockout hepatocyte cell lines. Proteomics was performed on EVs isolated by size exclusion chromatography, ultracentrifugation, and density gradient separation, and EV proteins were measured by mass spectrometry. We also performed human EV proteomics from a control and a NASH plasma sample, for comparative analyses with hepatocyte-derived lipotoxic EVs. Size exclusion chromatography yielded most unique EV proteins. Ceramide-dependent lipotoxic EVs contain damage-associated molecular patterns and adhesion molecules. Haptoglobin, vascular non-inflammatory molecule-1, and insulin-like growth factor-binding protein complex acid labile subunit were commonly detected in NASH and hepatocyte-derived ceramide-dependent EVs. Lipotoxic EV proteomics provides novel candidate proteins to investigate in NASH pathogenesis and as diagnostic biomarkers for hepatocyte-derived EVs in NASH patients.

19.
Ann Neurol ; 90(6): 887-900, 2021 12.
Article in English | MEDLINE | ID: mdl-34652821

ABSTRACT

OBJECTIVE: Epalrestat, an aldose reductase inhibitor increases phosphomannomutase (PMM) enzyme activity in a PMM2-congenital disorders of glycosylation (CDG) worm model. Epalrestat also decreases sorbitol level in diabetic neuropathy. We evaluated the genetic, biochemical, and clinical characteristics, including the Nijmegen Progression CDG Rating Scale (NPCRS), urine polyol levels and fibroblast glycoproteomics in patients with PMM2-CDG. METHODS: We performed PMM enzyme measurements, multiplexed proteomics, and glycoproteomics in PMM2-deficient fibroblasts before and after epalrestat treatment. Safety and efficacy of 0.8 mg/kg/day oral epalrestat were studied in a child with PMM2-CDG for 12 months. RESULTS: PMM enzyme activity increased post-epalrestat treatment. Compared with controls, 24% of glycopeptides had reduced abundance in PMM2-deficient fibroblasts, 46% of which improved upon treatment. Total protein N-glycosylation improved upon epalrestat treatment bringing overall glycosylation toward the control fibroblasts' glycosylation profile. Sorbitol levels were increased in the urine of 74% of patients with PMM2-CDG and correlated with the presence of peripheral neuropathy, and CDG severity rating scale. In the child with PMM2-CDG on epalrestat treatment, ataxia scores improved together with significant growth improvement. Urinary sorbitol levels nearly normalized in 3 months and blood transferrin glycosylation normalized in 6 months. INTERPRETATION: Epalrestat improved PMM enzyme activity, N-glycosylation, and glycosylation biomarkers in vitro. Leveraging cellular glycoproteome assessment, we provided a systems-level view of treatment efficacy and discovered potential novel biosignatures of therapy response. Epalrestat was well-tolerated and led to significant clinical improvements in the first pediatric patient with PMM2-CDG treated with epalrestat. We also propose urinary sorbitol as a novel biomarker for disease severity and treatment response in future clinical trials in PMM2-CDG. ANN NEUROL 20219999:n/a-n/a.


Subject(s)
Congenital Disorders of Glycosylation/diagnosis , Enzyme Inhibitors/therapeutic use , Phosphotransferases (Phosphomutases)/deficiency , Rhodanine/analogs & derivatives , Sorbitol/urine , Thiazolidines/therapeutic use , Adolescent , Adult , Aged , Biomarkers/urine , Child , Child, Preschool , Congenital Disorders of Glycosylation/drug therapy , Congenital Disorders of Glycosylation/urine , Female , Glycosylation , Humans , Infant , Male , Middle Aged , Patient Acuity , Phosphotransferases (Phosphomutases)/urine , Prognosis , Rhodanine/therapeutic use , Young Adult
20.
Mol Omics ; 17(6): 939-947, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34368825

ABSTRACT

Several plasma glycoproteins are clinically useful as biomarkers in a variety of diseases. Although thousands of proteins are present in plasma, >95% of the plasma proteome by mass is represented by only 22 proteins. This necessitates strategies to deplete the abundant proteins and enrich other subsets of proteins. Although glycoproteins are abundant in plasma, in routine proteomic analyses, glycopeptides are not often investigated. Traditional methods such as lectin-based enrichment of glycopeptides followed by deglycosylation have helped understand the glycoproteome, but they lack any information about the attached glycans. Here, we apply size-exclusion chromatography (SEC) as a simple strategy to enrich intact N-glycopeptides based on their larger size which achieves broad selectivity regardless of the nature of attached glycans. Using this approach, we identified 1317 N-glycopeptides derived from 266 glycosylation sites on 154 plasma glycoproteins. The deep coverage achieved by this approach was evidenced by extensive heterogeneity that was observed. For instance, 20-100 glycopeptides were observed per protein for the 15 most-glycosylated glycoproteins. Notably, we discovered 615 novel glycopeptides of which 39 glycosylation sites (from 38 glycoproteins) were not included in protein databases such as Uniprot and GlyConnectDB. Finally, we also identified 12 novel glycopeptides containing di-sialic acid, which is a rare glycan epitope. Our results demonstrate the utility of SEC for efficient LC-MS/MS-based deep glycoproteomics analysis of human plasma. Overall, the SEC-based method described here is a simple, rapid and high-throughput strategy for characterization of any glycoproteome.


Subject(s)
Glycopeptides , Proteomics , Chromatography, Gel , Chromatography, Liquid , Humans , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...