Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Am J Pathol ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885925

ABSTRACT

Local tetanus develops when limited amounts of tetanus neurotoxin (TeNT) are released by Clostridium tetani generated from spores inside a necrotic wound. Within days, a spastic paralysis restricted to the muscles of the affected anatomical area develops. This paralysis follows the retrograde transport of TeNT inside the axons of spinal cord motoneurons and its uptake by inhibitory interneurons with cleavage of a vesicle-associated membrane protein required for neurotransmitter release. Consequently, incontrollable excitation of motoneurons causes contractures of innervated muscles and leads to local spastic paralysis. Here, the initial events occurring close to the site of TeNT release were investigated in a mouse model of local tetanus. A peripheral flaccid paralysis was found to occur, before or overlapping, the spastic paralysis. At variance from the confined TeNT proteolytic activity at the periphery, central vesicle-associated membrane protein cleavage can be detected within inhibitory interneurons controlling motor neuron efferents innervating muscle groups distant from the site of TeNT release. These results indicate that TeNT does have peripheral activity in tetanus and explains why the spastic paralysis observed in local tetanus, although confined to single limbs, generally affects multiple muscles. The initial TeNT neuroparalytic activity can be detected by measuring the compound muscle action potential, providing a very early diagnosis and therapy, and thus preventing the ensuing life-threatening generalized tetanus.

2.
Aging Cell ; : e14250, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881280

ABSTRACT

Mitochondria are dynamic bioenergetic hubs that become compromised with age. In neurons, declining mitochondrial axonal transport has been associated with reduced cellular health. However, it is still unclear to what extent the decline of mitochondrial transport and function observed during ageing are coupled, and if somal and axonal mitochondria display compartment-specific features that make them more susceptible to the ageing process. It is also not known whether the biophysical state of the cytoplasm, thought to affect many cellular functions, changes with age to impact mitochondrial trafficking and homeostasis. Focusing on the mouse peripheral nervous system, we show that age-dependent decline in mitochondrial trafficking is accompanied by reduction of mitochondrial membrane potential and intramitochondrial viscosity, but not calcium buffering, in both somal and axonal mitochondria. Intriguingly, we observe a specific increase in cytoplasmic viscosity in the neuronal cell body, where mitochondria are most polarised, which correlates with decreased cytoplasmic diffusiveness. Increasing cytoplasmic crowding in the somatic compartment of DRG neurons grown in microfluidic chambers reduces mitochondrial axonal trafficking, suggesting a mechanistic link between the regulation of cytoplasmic viscosity and mitochondrial dynamics. Our work provides a reference for studying the relationship between neuronal mitochondrial homeostasis and the viscoelasticity of the cytoplasm in a compartment-dependent manner during ageing.

4.
bioRxiv ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38559020

ABSTRACT

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.

5.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583640

ABSTRACT

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Subject(s)
Axonal Transport , Brain-Derived Neurotrophic Factor , Charcot-Marie-Tooth Disease , Disease Models, Animal , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism , Humans , Mice, Transgenic , Muscle, Skeletal/metabolism , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mutation
6.
Cell Death Dis ; 14(8): 500, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542079

ABSTRACT

In the adult mammalian brain, neural stem cells (NSCs) located in highly restricted niches sustain the generation of new neurons that integrate into existing circuits. A reduction in adult neurogenesis is linked to ageing and neurodegeneration, whereas dysregulation of proliferation and survival of NSCs have been hypothesized to be at the origin of glioma. Thus, unravelling the molecular underpinnings of the regulated activation that NSCs must undergo to proliferate and generate new progeny is of considerable relevance. Current research has identified cues promoting or restraining NSCs activation. Yet, whether NSCs depend on external signals to survive or if intrinsic factors establish a threshold for sustaining their viability remains elusive, even if this knowledge could involve potential for devising novel therapeutic strategies. Kidins220 (Kinase D-interacting substrate of 220 kDa) is an essential effector of crucial pathways for neuronal survival and differentiation. It is dramatically altered in cancer and in neurological and neurodegenerative disorders, emerging as a regulatory molecule with important functions in human disease. Herein, we discover severe neurogenic deficits and hippocampal-based spatial memory defects accompanied by increased neuroblast death and high loss of newly formed neurons in Kidins220 deficient mice. Mechanistically, we demonstrate that Kidins220-dependent activation of AKT in response to EGF restraints GSK3 activity preventing NSCs apoptosis. We also show that NSCs with Kidins220 can survive with lower concentrations of EGF than the ones lacking this molecule. Hence, Kidins220 levels set a molecular threshold for survival in response to mitogens, allowing adult NSCs growth and expansion. Our study identifies Kidins220 as a key player for sensing the availability of growth factors to sustain adult neurogenesis, uncovering a molecular link that may help paving the way towards neurorepair.


Subject(s)
Adult Stem Cells , Neural Stem Cells , Adult , Animals , Humans , Mice , Adult Stem Cells/metabolism , Epidermal Growth Factor/metabolism , Glycogen Synthase Kinase 3/metabolism , Hippocampus/metabolism , Mammals , Neural Stem Cells/metabolism , Neurogenesis/physiology , Neurons/metabolism
7.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240244

ABSTRACT

Hearing loss and peripheral neuropathy are two clinical entities that are genetically and phenotypically heterogeneous and sometimes co-occurring. Using exome sequencing and targeted segregation analysis, we investigated the genetic etiology of peripheral neuropathy and hearing loss in a large Ashkenazi Jewish family. Moreover, we assessed the production of the candidate protein via western blotting of lysates from fibroblasts from an affected individual and an unaffected control. Pathogenic variants in known disease genes associated with hearing loss and peripheral neuropathy were excluded. A homozygous frameshift variant in the BICD1 gene, c.1683dup (p.(Arg562Thrfs*18)), was identified in the proband and segregated with hearing loss and peripheral neuropathy in the family. The BIDC1 RNA analysis from patient fibroblasts showed a modest reduction in gene transcripts compared to the controls. In contrast, protein could not be detected in fibroblasts from a homozygous c.1683dup individual, whereas BICD1 was detected in an unaffected individual. Our findings indicate that bi-allelic loss-of-function variants in BICD1 are associated with hearing loss and peripheral neuropathy. Definitive evidence that bi-allelic loss-of-function variants in BICD1 cause peripheral neuropathy and hearing loss will require the identification of other families and individuals with similar variants with the same phenotype.


Subject(s)
Deafness , Hearing Loss , Peripheral Nervous System Diseases , Humans , Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/genetics , Deafness/genetics , Hearing Loss/genetics , Pedigree , Peripheral Nervous System Diseases/genetics , Phenotype
8.
Mol Neurodegener ; 18(1): 30, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37143081

ABSTRACT

Amyotrophic lateral sclerosis is a complex disorder most of which is 'sporadic' of unknown origin but approximately 10% is familial, arising from single mutations in any of more than 30 genes. Thus, there are more than 30 familial ALS subtypes, with different, often unknown, molecular pathologies leading to a complex constellation of clinical phenotypes. We have mouse models for many genetic forms of the disorder, but these do not, on their own, necessarily show us the key pathological pathways at work in human patients. To date, we have no models for the 90% of ALS that is 'sporadic'. Potential therapies have been developed mainly using a limited set of mouse models, and through lack of alternatives, in the past these have been tested on patients regardless of aetiology. Cancer researchers have undertaken therapy development with similar challenges; they have responded by producing complex mouse models that have transformed understanding of pathological processes, and they have implemented patient stratification in multi-centre trials, leading to the effective translation of basic research findings to the clinic. ALS researchers have successfully adopted this combined approach, and now to increase our understanding of key disease pathologies, and our rate of progress for moving from mouse models to mechanism to ALS therapies we need more, innovative, complex mouse models to address specific questions.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice , Animals , Humans , Amyotrophic Lateral Sclerosis/metabolism , Disease Models, Animal , Mutation , Phenotype
9.
Toxicon ; 228: 107110, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37037273

ABSTRACT

Pathological tau aggregates propagate across functionally connected neuronal networks in human neurodegenerative pathologies, such as Alzheimer's disease. However, the mechanism underlying this process is poorly understood. Several studies have showed that tau release is dependent on neuronal activity and that pathological tau is found in the extracellular space in free form, as well as in the lumen of extracellular vesicles. We recently showed that metabotropic glutamate receptor activity and SNAP25 integrity modulate the release of pathological tau from human and mouse synaptosomes. Here, we have leveraged botulinum neurotoxins (BoNTs), which impair neurotransmitter release by cleaving specific synaptic SNARE proteins, to dissect molecular mechanisms related to tau release at synapses. In particular, we have tested the effect of botulinum neurotoxin A (BoNT/A) on the synaptic release of tau in primary mouse neurons. Hippocampal neurons were grown in microfluidic chambers and transduced with lentiviruses expressing human tau (hTau). We found that neuronal stimulation significantly increases the release of mutant hTau, whereas wild-type hTau is unaffected. Importantly, BoNT/A blocks mutant hTau release, indicating that this process is controlled by SNAP25, a component of the SNARE complex, in intact neurons. These results suggest that BoNTs are potent tools to study the spreading of pathological proteins in neurodegenerative diseases and could play a central role in identifying novel molecular targets for the development of therapeutic interventions to treat tauopathies.


Subject(s)
Botulinum Toxins, Type A , Tauopathies , Mice , Animals , Humans , Botulinum Toxins, Type A/pharmacology , Neurons , Tauopathies/metabolism , Tauopathies/pathology , Synaptic Transmission , Hippocampus/pathology
10.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-36928301

ABSTRACT

Gain-of-function mutations in the housekeeping gene GARS1, which lead to the expression of toxic versions of glycyl-tRNA synthetase (GlyRS), cause the selective motor and sensory pathology characterizing Charcot-Marie-Tooth disease (CMT). Aberrant interactions between GlyRS mutants and different proteins, including neurotrophin receptor tropomyosin receptor kinase receptor B (TrkB), underlie CMT type 2D (CMT2D); however, our pathomechanistic understanding of this untreatable peripheral neuropathy remains incomplete. Through intravital imaging of the sciatic nerve, we show that CMT2D mice displayed early and persistent disturbances in axonal transport of neurotrophin-containing signaling endosomes in vivo. We discovered that brain-derived neurotrophic factor (BDNF)/TrkB impairments correlated with transport disruption and overall CMT2D neuropathology and that inhibition of this pathway at the nerve-muscle interface perturbed endosome transport in wild-type axons. Accordingly, supplementation of muscles with BDNF, but not other neurotrophins, completely restored physiological axonal transport in neuropathic mice. Together, these findings suggest that selectively targeting muscles with BDNF-boosting therapies could represent a viable therapeutic strategy for CMT2D.


Subject(s)
Charcot-Marie-Tooth Disease , Mice , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Axonal Transport/genetics , Brain-Derived Neurotrophic Factor/genetics , Mutation
11.
Elife ; 122023 03 10.
Article in English | MEDLINE | ID: mdl-36897066

ABSTRACT

Neurons process real-time information from axon terminals to coordinate gene expression, growth, and plasticity. Inputs from distal axons are encoded as a stream of endocytic organelles, termed signalling endosomes, targeted to the soma. Formation of these organelles depends on target-derived molecules, such as brain-derived neurotrophic factor (BDNF), which is recognised by TrkB receptors on the plasma membrane, endocytosed, and transported to the cell body along the microtubules network. Notwithstanding its physiological and neuropathological importance, the mechanism controlling the sorting of TrkB to signalling endosomes is currently unknown. In this work, we use primary mouse neurons to uncover the small GTPase Rab10 as critical for TrkB sorting and propagation of BDNF signalling from axon terminals to the soma. Our data demonstrate that Rab10 defines a novel membrane compartment that is rapidly mobilised towards the axon terminal upon BDNF stimulation, enabling the axon to fine-tune retrograde signalling depending on BDNF availability at the synapse. These results help clarifying the neuroprotective phenotype recently associated to Rab10 polymorphisms in Alzheimer's disease and provide a new therapeutic target to halt neurodegeneration.


Subject(s)
Axonal Transport , Brain-Derived Neurotrophic Factor , Receptor, trkB , rab GTP-Binding Proteins , Animals , Mice , Axonal Transport/physiology , Axons/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neurons/physiology , Protein Transport/physiology , rab GTP-Binding Proteins/metabolism , Receptor, trkB/metabolism
12.
Neuronal Signal ; 7(1): NS20220098, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36743438

ABSTRACT

Axonal transport is the essential process by which neurons actively traffic a variety of cargoes between the cell soma and axon terminals. Accordingly, dysfunctional axonal transport is linked to many nervous system conditions. Therefore, being able to image and quantify this dynamic process in live neurons of animal disease models is beneficial for understanding neuropathology and testing new therapies at the preclinical level. As such, intravital approaches have been developed to assess cargo movement in the hindlimb sciatic nerves of live, anaesthetised mice. Here, we describe an adapted method for in vivo imaging of axonal transport in intact median and ulnar nerves of the rodent forelimb. Injection of a fluorescently labelled and non-toxic fragment of tetanus neurotoxin (HCT) into the mouse forepaw permits the identification of signalling endosomes in intact axons of median and ulnar nerves. Through immunofluorescent analysis of forelimb lumbrical muscles and median/ulnar nerves, we confirmed that HCT is taken up at motor nerve terminals and predominantly locates to motor axons. We then showed that the baseline trafficking of signalling endosomes is similar between the median/ulnar nerves and the sciatic nerve in adult wild-type mice. Importantly, this adapted method can be readily tailored for assessment of additional cargoes, such as mitochondria. By measuring transport in forelimb and hindlimb nerves, comparative anatomical and functional analyses can be performed in rodent disease models to aid our understanding of peripheral nerve disease pathogenesis and response to injury.

14.
Acta Neuropathol Commun ; 10(1): 189, 2022 12 25.
Article in English | MEDLINE | ID: mdl-36567321

ABSTRACT

Regeneration of the neuromuscular junction (NMJ) leverages on extensive exchange of factors released from motor axon terminals (MATs), muscle fibers and perisynaptic Schwann cells (PSCs), among which hydrogen peroxide (H2O2) is a major pro-regenerative signal. To identify critical determinants of NMJ remodeling in response to injury, we performed temporal transcriptional profiling of NMJs from 2 month-old mice during MAT degeneration/regeneration, and cross-referenced the differentially expressed genes with those elicited by H2O2 in SCs. We identified an enrichment in extracellular matrix (ECM) transcripts, including Connective Tissue Growth Factor (Ctgf), which is usually expressed during development. We discovered that Ctgf levels are increased in a Yes-associated protein (YAP)-dependent fashion in response to rapid, local H2O2 signaling generated by stressed mitochondria in the injured sciatic nerve, a finding highlighting the importance of signals triggered by mechanical force to motor nerve repair. Through sequestration of Ctgf or inactivation of H2O2, we delayed the recovery of neuromuscular function by impairing SC migration and, in turn, axon-oriented re-growth. These data indicate that H2O2 and its downstream effector Ctgf are pro-regenerative factors that enable axonal growth, and reveal a striking ECM remodeling process during nerve regeneration upon local H2O2 signaling. Our study identifies key transcriptomic changes at the regenerating NMJ, providing a rich source of pro-regenerative factors with potential for alleviating the consequences of peripheral nerve injuries.


Subject(s)
Axons , Connective Tissue Growth Factor , Hydrogen Peroxide , Nerve Regeneration , Peripheral Nerve Injuries , Animals , Mice , Axons/physiology , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Hydrogen Peroxide/metabolism , Mice, Transgenic , Nerve Regeneration/physiology , Peripheral Nerve Injuries/physiopathology , Schwann Cells/metabolism
15.
J Pharmacol Exp Ther ; 383(2): 117-128, 2022 11.
Article in English | MEDLINE | ID: mdl-36116796

ABSTRACT

Using synaptosomes purified from the brains of two transgenic mouse models overexpressing mutated human tau (TgP301S and Tg4510) and brains of patients with sporadic Alzheimer's disease, we showed that aggregated and hyperphosphorylated tau was both present in purified synaptosomes and released in a calcium- and synaptosome-associated protein of 25 kDa (SNAP25)-dependent manner. In all mouse and human synaptosomal preparations, tau release was inhibited by the selective metabotropic glutamate receptor 2/3 (mGluR2/3) agonist LY379268, an effect prevented by the selective mGlu2/3 antagonist LY341495. LY379268 was also able to block pathologic tau propagation between primary neurons in an in vitro microfluidic cellular model. These novel results are transformational for our understanding of the molecular mechanisms mediating tau release and propagation at synaptic terminals in Alzheimer's disease and suggest that these processes could be inhibited therapeutically by the selective activation of presynaptic G protein-coupled receptors. SIGNIFICANCE STATEMENT: Pathological tau release and propagation are key neuropathological events underlying cognitive decline in Alzheimer's disease patients. This paper describes the role of regulated exocytosis, and the soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein SNAP25, in mediating tau release from rodent and human synaptosomes. This paper also shows that a selective mGluR2/3 agonist is highly effective in blocking tau release from synaptosomes and tau propagation between neurons, opening the way to the discovery of novel therapeutic approaches to this devastating disease.


Subject(s)
Alzheimer Disease , Receptors, Metabotropic Glutamate , tau Proteins/metabolism , Alzheimer Disease/drug therapy , Animals , Calcium/metabolism , Exocytosis , Humans , Mice , N-Ethylmaleimide-Sensitive Proteins/metabolism , N-Ethylmaleimide-Sensitive Proteins/pharmacology , Receptors, Metabotropic Glutamate/metabolism , SNARE Proteins/metabolism , SNARE Proteins/pharmacology , Synaptosomes/metabolism
16.
Biol Open ; 11(9)2022 09 15.
Article in English | MEDLINE | ID: mdl-35929543

ABSTRACT

Enterovirus 71 (EV71) is one of the causative agents of hand-foot-and-mouth disease, which in some circumstances could lead to severe neurological diseases. Despite of its importance for human health, little is known about the early stages of EV71 infection. EV71 starts uncoating with its receptor, human scavenger receptor B2 (hSCARB2), at low pH. We show that EV71 was not targeted to lysosomes in human rhabdomyosarcoma cells overexpressing hSCARB2 and that the autophagic pathway is not essential for EV71 productive uncoating. Instead, EV71 was efficiently uncoated 30 min after infection in late endosomes (LEs) containing hSCARB2, mannose-6-phosphate receptor (M6PR), RAB9, bis(monoacylglycero)phosphate and lysosomal associated membrane protein 2 (LAMP2). Furthering the notion that mature LEs are crucial for EV71 uncoating, cation-dependent (CD)-M6PR knockdown impairs EV71 infection. Since hSCARB2 interacts with cation-independent (CI)-M6PR through M6P-binding sites and CD-M6PR also harbor a M6P-binding site, CD-M6PR is likely to play important roles in EV71 uncoating in LEs.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Animals , Cations/metabolism , Endosomes/metabolism , Enterovirus/metabolism , Enterovirus A, Human/metabolism , Humans , Lysosomal Membrane Proteins/chemistry , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Receptor, IGF Type 2/metabolism , Receptors, Scavenger/chemistry , Receptors, Scavenger/genetics , Receptors, Scavenger/metabolism
17.
Acta Neuropathol Commun ; 10(1): 121, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35996201

ABSTRACT

Axonal transport ensures long-range delivery of essential cargoes between proximal and distal compartments, and is needed for neuronal development, function, and survival. Deficits in axonal transport have been detected at pre-symptomatic stages in the SOD1G93A and TDP-43M337V mouse models of amyotrophic lateral sclerosis (ALS), suggesting that impairments in this critical process are fundamental for disease pathogenesis. Strikingly, in ALS, fast motor neurons (FMNs) degenerate first whereas slow motor neurons (SMNs) are more resistant, and this is a currently unexplained phenomenon. The main aim of this investigation was to determine the effects of brain-derived neurotrophic factor (BDNF) on in vivo axonal transport in different α-motor neuron (MN) subtypes in wild-type (WT) and SOD1G93A mice. We report that despite displaying similar basal transport speeds, stimulation of wild-type MNs with BDNF enhances in vivo trafficking of signalling endosomes specifically in FMNs. This BDNF-mediated enhancement of transport was also observed in primary ventral horn neuronal cultures. However, FMNs display selective impairment of axonal transport in vivo in symptomatic SOD1G93A mice, and are refractory to BDNF stimulation, a phenotype that was also observed in primary embryonic SOD1G93A neurons. Furthermore, symptomatic SOD1G93A mice display upregulation of the classical non-pro-survival truncated TrkB and p75NTR receptors in muscles, sciatic nerves, and Schwann cells. Altogether, these data indicate that cell- and non-cell autonomous BDNF signalling is impaired in SOD1G93A MNs, thus identifying a new key deficit in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Axonal Transport , Brain-Derived Neurotrophic Factor , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Motor Neurons/metabolism , Superoxide Dismutase-1/genetics
18.
Biochem Biophys Res Commun ; 626: 72-78, 2022 10 20.
Article in English | MEDLINE | ID: mdl-35973377

ABSTRACT

Poliovirus (PV) can spread through neural pathway to the central nervous system and replicates in motor neurons, which leads to poliomyelitis. Enterovirus 71 (EV71), which is closely related to PV, is one of the causative agents of hand-foot-and-mouth disease and can cause severe neurological diseases similar to poliomyelitis. Since PV is similar to EV71 in its motor neurotoxicity, we tried to understand if the results obtained with PV are of general applicability to EV71 and other viruses with similar characteristics. Using microfluidic devices, we demonstrated that both PV capsid and the PV genome undergo axonal retrograde transport with human PV receptor (hPVR), and the transported virus replicated in the soma of hPVR-expressing motor neurons. Similar to PV in hPVR-transgenic (Tg) mice, neural pathway ensuring spreading of EV71 has been shown in adult human scavenger receptor class B, member 2 (hSCARB2)-Tg mice. We have validated this finding in microfluidic devices by showing that EV71 is retrogradely transported together with hSCARB2 to the cell body where it replicates in an hSCARB2-dependent manner.


Subject(s)
Enterovirus A, Human , Enterovirus , Poliomyelitis , Poliovirus , Animals , Axonal Transport/physiology , Enterovirus A, Human/physiology , Humans , Mice , Mice, Transgenic , Motor Neurons , Poliovirus/metabolism
19.
Cell Death Dis ; 13(7): 584, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798698

ABSTRACT

Deficits in axonal transport are one of the earliest pathological outcomes in several models of amyotrophic lateral sclerosis (ALS), including SOD1G93A mice. Evidence suggests that rescuing these deficits prevents disease progression, stops denervation, and extends survival. Kinase inhibitors have been previously identified as transport enhancers, and are being investigated as potential therapies for ALS. For example, inhibitors of p38 mitogen-activated protein kinase and insulin growth factor receptor 1 have been shown to rescue axonal transport deficits in vivo in symptomatic SOD1G93A mice. In this work, we investigated the impact of RET, the tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF), as a modifier of axonal transport. We identified the fundamental interplay between RET signalling and axonal transport in both wild-type and SOD1G93A motor neurons in vitro. We demonstrated that blockade of RET signalling using pharmacological inhibitors and genetic knockdown enhances signalling endosome transport in wild-type motor neurons and uncovered a divergence in the response of primary motor neurons to GDNF compared with cell lines. Finally, we showed that inhibition of the GDNF-RET signalling axis rescues in vivo transport deficits in early symptomatic SOD1G93A mice, promoting RET as a potential therapeutic target in the treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Axonal Transport , Glial Cell Line-Derived Neurotrophic Factor , Proto-Oncogene Proteins c-ret , Amyotrophic Lateral Sclerosis/metabolism , Animals , Axonal Transport/physiology , Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Mice , Mice, Transgenic , Motor Neurons/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
20.
Front Cell Neurosci ; 16: 844211, 2022.
Article in English | MEDLINE | ID: mdl-35573838

ABSTRACT

Several neurodegenerative diseases are characterized by the accumulation of aggregated misfolded proteins. These pathological agents have been suggested to propagate in the brain via mechanisms similar to that observed for the prion protein, where a misfolded variant is transferred from an affected brain region to a healthy one, thereby inducing the misfolding and/or aggregation of correctly folded copies. This process has been characterized for several proteins, such as α-synuclein, tau, amyloid beta (Aß) and less extensively for huntingtin and TDP-43. α-synuclein, tau, TDP-43 and huntingtin are intracellular proteins, and their aggregates are located in the cytosol or nucleus of neurons. They have been shown to spread between cells and this event occurs, at least partially, via secretion of these protein aggregates in the extracellular space followed by re-uptake. Conversely, Aß aggregates are found mainly extracellularly, and their spreading occurs in the extracellular space between brain regions. Due to the inherent nature of their spreading modalities, these proteins are exposed to components of the extracellular matrix (ECM), including glycans, proteases and core matrix proteins. These ECM components can interact with or process pathological misfolded proteins, potentially changing their properties and thus regulating their spreading capabilities. Here, we present an overview of the documented roles of ECM components in the spreading of pathological protein aggregates in neurodegenerative diseases with the objective of identifying the current gaps in knowledge and stimulating further research in the field. This could potentially lead to the identification of druggable targets to slow down the spreading and/or progression of these pathologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...