Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Cell Rep Med ; 5(6): 101593, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38843842

ABSTRACT

Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.


Subject(s)
Aging , Cyclic AMP-Dependent Protein Kinases , Diet, Ketogenic , Long-Term Potentiation , Memory , Proteome , Signal Transduction , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Aging/physiology , Aging/metabolism , Diet, Ketogenic/methods , Proteome/metabolism , Mice , Male , Memory/physiology , Long-Term Potentiation/physiology , Mice, Inbred C57BL , Hippocampus/metabolism , Synapses/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neuronal Plasticity/physiology , Phosphorylation
2.
Geroscience ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869711

ABSTRACT

Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated ß-galactosidase activity (SA-ß-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by (i) quantifying colorimetric SA-ß-Gal via optical density; (ii) implementing staining background controls; and (iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C12FDG live-cell SA-ß-Gal staining on the single-cell level. We observed only a modest correlation between the two, indicating that those stains are not trivially interchangeable. Finally, we provide proof of concept that our method is suitable for screening compounds that modify senescence burden. This method will be broadly useful to the aging field by enabling rapid, unbiased, and user-friendly quantification of senescence burden in culture, as well as facilitating large-scale experiments that were previously impractical.

3.
Article in English | MEDLINE | ID: mdl-38831121

ABSTRACT

Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.

4.
Am J Physiol Renal Physiol ; 327(1): F128-F136, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38695076

ABSTRACT

Acute kidney injury (AKI) is extremely prevalent among hospitalizations and presents a significant risk for the development of chronic kidney disease and increased mortality. Ischemia caused by shock, trauma, and transplant are common causes of AKI. To attenuate ischemic AKI therapeutically, we need a better understanding of the physiological and cellular mechanisms underlying damage. Instances of ischemia are most damaging in proximal tubule epithelial cells (PTECs) where hypoxic signaling cascades, and perhaps more rapidly, posttranslational modifications (PTMs), act in concert to change cellular metabolism. Here, we focus on the effects of the understudied PTM, lysine succinylation. We have previously shown a protective effect of protein hypersuccinylation on PTECs after depletion of the desuccinylase sirtuin5. General trends in the results suggested that hypersuccinylation led to upregulation of peroxisomal activity and was protective against kidney injury. Included in the list of changes was the Parkinson's-related deglycase Park7. There is little known about any links between peroxisome activity and Park7. In this study, we show in vitro and in vivo that Park7 has a crucial role in protection from AKI and upregulated peroxisome activity. These data in combination with published results of Park7's protective role in cardiovascular damage and chronic kidney disease lead us to hypothesize that succinylation of Park7 may ameliorate oxidative damage resulting from AKI and prevent disease progression. This novel mechanism provides a potential therapeutic mechanism that can be targeted.NEW & NOTEWORTHY Succinylation is an understudied posttranslational modification that has been shown to increase peroxisomal activity. Furthermore, increased peroxisomal activity has been shown to reduce oxidative stress and protect proximal tubules after acute kidney injury. Analysis of mass spectrometry succinylomic and proteomic data reveals a novel role for Parkinson's related Park7 in mediating Nrf2 antioxidant response after kidney injury. This novel protection pathway provides new insights for kidney injury prevention and development of novel therapeutics.


Subject(s)
Acute Kidney Injury , Kidney Tubules, Proximal , Protein Deglycase DJ-1 , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , Protein Processing, Post-Translational , Mice, Inbred C57BL , Disease Models, Animal , Male , Sirtuins/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction , Mice , Oxidative Stress , Lysine/metabolism
5.
STAR Protoc ; 5(2): 103074, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38771695

ABSTRACT

Lysine malonylation is a protein posttranslational modification. We present a protocol to generate stable gene-knockdown K562 cell lines through lentiviral infection of a CRISPR interference (CRISPRi) system followed by lysine malonylation measurement using mass spectrometry (MS). We detail guide RNA (gRNA) vector cloning, lentiviral infection, cell line purification, protein digestion, malonyl-lysine enrichment, desalting, and MS acquisition and analysis. For complete details on the use and execution of this protocol, please refer to Zhang et al.1 and Bons et al.2.


Subject(s)
Lysine Acetyltransferases , Lysine , Mass Spectrometry , Humans , K562 Cells , Lysine/metabolism , Mass Spectrometry/methods , Lysine Acetyltransferases/metabolism , Lysine Acetyltransferases/genetics , CRISPR-Cas Systems , Protein Processing, Post-Translational , Malonates/metabolism , RNA, Guide, CRISPR-Cas Systems/metabolism
6.
Geroscience ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753231

ABSTRACT

Loss of proteostasis is a highly conserved feature of aging across model organisms and results in the accumulation of insoluble protein aggregates. Protein insolubility is also a unifying feature of major age-related neurodegenerative diseases, including Alzheimer's Disease (AD), in which hundreds of insoluble proteins associate with aggregated amyloid beta (Aß) in senile plaques. Despite the connection between aging and AD risk, therapeutic approaches to date have overlooked aging-driven generalized protein insolubility as a contributing factor. However, proteins that become insoluble during aging in model organisms are capable of accelerating Aß aggregation in vitro and lifespan in vivo. Here, using an unbiased proteomics approach, we questioned the relationship between Aß and age-related protein insolubility. Specifically, we uncovered that Aß expression drives proteome-wide protein insolubility in C. elegans, even in young animals, and this insoluble proteome is highly similar to the insoluble proteome driven by normal aging, this vulnerable sub-proteome we term the core insoluble proteome (CIP). We show that the CIP is enriched with proteins that modify Aß toxicity in vivo, suggesting the possibility of a vicious feedforward cycle in the context of AD. Importantly, using human genome-wide association studies (GWAS), we show that the CIP is replete with biological processes implicated not only in neurodegenerative diseases but also across a broad array of chronic, age-related diseases (CARDs). This provides suggestive evidence that age-related loss of proteostasis could play a role in general CARD risk. Finally, we show that the geroprotective, gut-derived metabolite, Urolithin A, relieves Aß toxicity, supporting its use in clinical trials for dementia and age-related diseases.

7.
J Clin Invest ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687608

ABSTRACT

Dicarboxylic fatty acids are generated in the liver and kidney in a minor pathway called fatty acid ω-oxidation. The effects of consuming dicarboxylic fatty acids as an alternative source of dietary fat have not been explored. Here, we fed dodecanedioic acid, a 12-carbon dicarboxylic (DC12), to mice at 20% of daily caloric intake for nine weeks. DC12 increased metabolic rate, reduced body fat, reduced liver fat, and improved glucose tolerance. We observed DC12-specific breakdown products in liver, kidney, muscle, heart, and brain, indicating that oral DC12 escaped first-pass liver metabolism and was utilized by many tissues. In tissues expressing the "a" isoform of acyl-CoA oxidase-1 (ACOX1), a key peroxisomal fatty acid oxidation enzyme, DC12 was chain shortened to the TCA cycle intermediate succinyl-CoA. In tissues with low peroxisomal fatty acid oxidation capacity, DC12 was oxidized by mitochondria. In vitro, DC12 was catabolized even by adipose tissue and was not stored intracellularly. We conclude that DC12 and other dicarboxylic acids may be useful for combatting obesity and for treating metabolic disorders.

8.
Aging (Albany NY) ; 16(8): 6673-6693, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38683123

ABSTRACT

PURPOSE: The objective of this study was to investigate the senescent phenotypes of human corneal endothelial cells (hCEnCs) upon treatment with ultraviolet (UV)-A. METHODS: We assessed cell morphology, senescence-associated ß-galactosidase (SA-ß-gal) activity, cell proliferation and expression of senescence markers (p16 and p21) in hCEnCs exposed to UV-A radiation, and senescent hCEnCs induced by ionizing radiation (IR) were used as positive controls. We performed RNA sequencing and proteomics analyses to compare gene and protein expression profiles between UV-A- and IR-induced senescent hCEnCs, and we also compared the results to non-senescent hCEnCs. RESULTS: Cells exposed to 5 J/cm2 of UV-A or to IR exhibited typical senescent phenotypes, including enlargement, increased SA-ß-gal activity, decreased cell proliferation and elevated expression of p16 and p21. RNA-Seq analysis revealed that 83.9% of the genes significantly upregulated and 82.6% of the genes significantly downregulated in UV-A-induced senescent hCEnCs overlapped with the genes regulated in IR-induced senescent hCEnCs. Proteomics also revealed that 93.8% of the proteins significantly upregulated in UV-A-induced senescent hCEnCs overlapped with those induced by IR. In proteomics analyses, senescent hCEnCs induced by UV-A exhibited elevated expression levels of several factors part of the senescence-associated secretory phenotype. CONCLUSIONS: In this study, where senescence was induced by UV-A, a more physiological stress for hCEnCs compared to IR, we determined that UV-A modulated the expression of many genes and proteins typically altered upon IR treatment, a more conventional method of senescence induction, even though UV-A also modulated specific pathways unrelated to IR.


Subject(s)
Cell Proliferation , Cellular Senescence , Endothelial Cells , Ultraviolet Rays , Humans , Cellular Senescence/radiation effects , Ultraviolet Rays/adverse effects , Cell Proliferation/radiation effects , Endothelial Cells/radiation effects , Endothelial Cells/metabolism , Endothelium, Corneal/radiation effects , Endothelium, Corneal/metabolism , Cells, Cultured , Proteomics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , beta-Galactosidase/metabolism , beta-Galactosidase/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics
9.
Nat Cell Biol ; 26(4): 504-505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38589533
10.
J Neuroinflammation ; 21(1): 66, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459557

ABSTRACT

INTRODUCTION: Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the Huntingtin gene (HTT). Immune activation is abundant in the striatum of HD patients. Detection of active microglia at presymptomatic stages suggests that microgliosis is a key early driver of neuronal dysfunction and degeneration. Recent studies showed that deletion of Tyrobp, a microglial protein, ameliorates neuronal dysfunction in Alzheimer's disease amyloidopathy and tauopathy mouse models while decreasing components of the complement subnetwork. OBJECTIVE: While TYROBP/DAP12-mediated microglial activation is detrimental for some diseases such as peripheral nerve injury, it is beneficial for other diseases. We sought to determine whether the TYROBP network is implicated in HD and whether Tyrobp deletion impacts HD striatal function and transcriptomics. METHODS: To test the hypothesis that Tyrobp deficiency would be beneficial in an HD model, we placed the Q175 HD mouse model on a Tyrobp-null background. We characterized these mice with a combination of behavioral testing, immunohistochemistry, transcriptomic and proteomic profiling. Further, we evaluated the gene signature in isolated Q175 striatal microglia, with and without Tyrobp. RESULTS: Comprehensive analysis of publicly available human HD transcriptomic data revealed that the TYROBP network is overactivated in the HD putamen. The Q175 mice showed morphologic microglial activation, reduced levels of post-synaptic density-95 protein and motor deficits at 6 and 9 months of age, all of which were ameliorated on the Tyrobp-null background. Gene expression analysis revealed that lack of Tyrobp in the Q175 model does not prevent the decrease in the expression of striatal neuronal genes but reduces pro-inflammatory pathways that are specifically active in HD human brain, including genes identified as detrimental in neurodegenerative diseases, e.g. C1q and members of the Ccr5 signaling pathway. Integration of transcriptomic and proteomic data revealed that astrogliosis and complement system pathway were reduced after Tyrobp deletion, which was further validated by immunofluorescence analysis. CONCLUSIONS: Our data provide molecular and functional support demonstrating that Tyrobp deletion prevents many of the abnormalities in the HD Q175 mouse model, suggesting that the Tyrobp pathway is a potential therapeutic candidate for Huntington's disease.


Subject(s)
Huntington Disease , Mice , Animals , Humans , Huntington Disease/metabolism , Microglia/metabolism , Gliosis/genetics , Gliosis/metabolism , Proteomics , Corpus Striatum/metabolism , Disease Models, Animal , Mice, Transgenic , Membrane Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism
11.
Nat Metab ; 6(3): 550-566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448615

ABSTRACT

The post-translational modification lysine succinylation is implicated in the regulation of various metabolic pathways. However, its biological relevance remains uncertain due to methodological difficulties in determining high-impact succinylation sites. Here, using stable isotope labelling and data-independent acquisition mass spectrometry, we quantified lysine succinylation stoichiometries in mouse livers. Despite the low overall stoichiometry of lysine succinylation, several high-stoichiometry sites were identified, especially upon deletion of the desuccinylase SIRT5. In particular, multiple high-stoichiometry lysine sites identified in argininosuccinate synthase (ASS1), a key enzyme in the urea cycle, are regulated by SIRT5. Mutation of the high-stoichiometry lysine in ASS1 to succinyl-mimetic glutamic acid significantly decreased its enzymatic activity. Metabolomics profiling confirms that SIRT5 deficiency decreases urea cycle activity in liver. Importantly, SIRT5 deficiency compromises ammonia tolerance, which can be reversed by the overexpression of wild-type, but not succinyl-mimetic, ASS1. Therefore, lysine succinylation is functionally important in ammonia metabolism.


Subject(s)
Lysine , Sirtuins , Mice , Animals , Lysine/chemistry , Lysine/metabolism , Ammonia , Sirtuins/metabolism , Mice, Knockout , Urea
12.
Bone Res ; 12(1): 13, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409111

ABSTRACT

Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFß signaling (TßRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFß signaling and PLR, but aging did not worsen the existing PLR suppression in male TßRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFß. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFß-dependent maintenance of collagen integrity.


Subject(s)
Bone Remodeling , Osteocytes , Humans , Aged , Male , Animals , Mice , Bone Remodeling/physiology , Collagen/pharmacology , Aging , Transforming Growth Factor beta/pharmacology
13.
J Clin Invest ; 134(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38299587

ABSTRACT

Synaptic plasticity is obstructed by pathogenic tau in the brain, representing a key mechanism that underlies memory loss in Alzheimer's disease (AD) and related tauopathies. Here, we found that reduced levels of the memory-associated protein KIdney/BRAin (KIBRA) in the brain and increased KIBRA protein levels in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. We next defined a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIBRA protein (CT-KIBRA). We showed that CT-KIBRA restored plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we found that CT-KIBRA stabilized the protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. Thus, our results distinguished KIBRA both as a biomarker of synapse dysfunction and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.


Subject(s)
Alzheimer Disease , Resilience, Psychological , Tauopathies , Mice , Animals , Humans , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology , Brain/metabolism , Alzheimer Disease/pathology , Memory Disorders/genetics , Memory Disorders/metabolism , Neuronal Plasticity , Mice, Transgenic , Kidney/metabolism , Disease Models, Animal
14.
Nat Commun ; 15(1): 467, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212606

ABSTRACT

Dietary restriction (DR) delays aging, but the mechanism remains unclear. We identified polymorphisms in mtd, the fly homolog of OXR1, which influenced lifespan and mtd expression in response to DR. Knockdown in adulthood inhibited DR-mediated lifespan extension in female flies. We found that mtd/OXR1 expression declines with age and it interacts with the retromer, which regulates trafficking of proteins and lipids. Loss of mtd/OXR1 destabilized the retromer, causing improper protein trafficking and endolysosomal defects. Overexpression of retromer genes or pharmacological restabilization with R55 rescued lifespan and neurodegeneration in mtd-deficient flies and endolysosomal defects in fibroblasts from patients with lethal loss-of-function of OXR1 variants. Multi-omic analyses in flies and humans showed that decreased Mtd/OXR1 is associated with aging and neurological diseases. mtd/OXR1 overexpression rescued age-related visual decline and tauopathy in a fly model. Hence, OXR1 plays a conserved role in preserving retromer function and is critical for neuronal health and longevity.


Subject(s)
Aging , Nervous System Diseases , Humans , Female , Aging/genetics , Longevity/genetics , Neurons/metabolism , Nervous System Diseases/metabolism , Brain/metabolism , Caloric Restriction , Mitochondrial Proteins/metabolism
15.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38187756

ABSTRACT

Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated ß-galactosidase activity (SA-ß-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by i) quantifying colorimetric SA-ß-Gal via optical density; ii) implementing staining background controls; iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C12FDG live-cell SA-ß-Gal staining on the single-cell level. We observed only a modest correlation between the two, indicating that those stains are not trivially interchangeable. Finally, we provide proof of concept that our method is suitable for screening compounds that modify senescence burden. This method will be broadly useful to the aging field by enabling rapid, unbiased, and user-friendly quantification of senescence burden in culture, as well as facilitating large-scale experiments that were previously impractical.

16.
Cell Mol Gastroenterol Hepatol ; 17(4): 639-656, 2024.
Article in English | MEDLINE | ID: mdl-38199279

ABSTRACT

BACKGROUND & AIMS: Chronic inflammatory illnesses are debilitating and recurrent conditions associated with significant comorbidities, including an increased risk of developing cancer. Extensive tissue remodeling is a hallmark of such illnesses, and is both a consequence and a mediator of disease progression. Despite previous characterization of epithelial and stromal remodeling during inflammatory bowel disease, a complete understanding of its impact on disease progression is lacking. METHODS: A comprehensive proteomic pipeline using data-independent acquisition was applied to decellularized colon samples from the Muc2 knockout (Muc2KO) mouse model of colitis for an in-depth characterization of extracellular matrix remodeling. Unique proteomic profiles of the matrisomal landscape were extracted from prepathologic and overt colitis. Integration of proteomics and transcriptomics data sets extracted from the same murine model produced network maps describing the orchestrating role of matrisomal proteins in tissue remodeling during the progression of colitis. RESULTS: The in-depth proteomic workflow used here allowed the addition of 34 proteins to the known colon matrisomal signature. Protein signatures of prepathologic and pathologic colitic states were extracted, differentiating the 2 states by expression of small leucine-rich proteoglycans. We outlined the role of this class and other matrisomal proteins in tissue remodeling during colitis, as well as the potential for coordinated regulation of cell types by matrisomal ligands. CONCLUSIONS: Our work highlights a central role for matrisomal proteins in tissue remodeling during colitis and defines orchestrating nodes that can be exploited in the selection of therapeutic targets.


Subject(s)
Colitis , Proteomics , Mice , Animals , Extracellular Matrix/metabolism , Colitis/pathology , Chronic Disease , Disease Progression
17.
Proteomics ; 24(5): e2300162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37775337

ABSTRACT

Acute kidney injury (AKI) manifests as a major health concern, particularly for the elderly. Understanding AKI-related proteome changes is critical for prevention and development of novel therapeutics to recover kidney function and to mitigate the susceptibility for recurrent AKI or development of chronic kidney disease. In this study, mouse kidneys were subjected to ischemia-reperfusion injury, and the contralateral kidneys remained uninjured to enable comparison and assess injury-induced changes in the kidney proteome. A ZenoTOF 7600 mass spectrometer was optimized for data-independent acquisition (DIA) to achieve comprehensive protein identification and quantification. Short microflow gradients and the generation of a deep kidney-specific spectral library allowed for high-throughput, comprehensive protein quantification. Upon AKI, the kidney proteome was completely remodeled, and over half of the 3945 quantified protein groups changed significantly. Downregulated proteins in the injured kidney were involved in energy production, including numerous peroxisomal matrix proteins that function in fatty acid oxidation, such as ACOX1, CAT, EHHADH, ACOT4, ACOT8, and Scp2. Injured kidneys exhibited severely damaged tissues and injury markers. The comprehensive and sensitive kidney-specific DIA-MS assays feature high-throughput analytical capabilities to achieve deep coverage of the kidney proteome, and will serve as useful tools for developing novel therapeutics to remediate kidney function.


Subject(s)
Acute Kidney Injury , Proteomics , Humans , Mice , Animals , Aged , Proteome , Down-Regulation , Kidney
18.
Article in English | MEDLINE | ID: mdl-37982669

ABSTRACT

Cellular senescence, a hallmark of aging, results in a senescence-associated secretory phenotype (SASP) with an increased production of proinflammatory cytokines, growth factors, and proteases. Evidence from nonhuman models demonstrates that SASP contributes to tissue dysfunction and pathological effects of aging. However, there are relatively few human studies on the relationship between SASP and aging-related health outcomes. Proteins from the SASP Atlas were measured in plasma using aptamer-based proteomics (SomaLogic). Regression models were used to identify SASP protein associations with aging-related traits representing multiple aspects of physiology in 1 201 participants from 2 human cohort studies (BLSA/GESTALT and InCHIANTI). Traits examined were fasting glucose, C-reactive protein, interleukin-6, alkaline phosphatase, blood urea nitrogen, albumin, red blood cell distribution width, waist circumference, systolic and diastolic blood pressure, gait speed, and grip strength. Study results were combined with a fixed-effect inverse-variance weighted meta-analysis. In the meta-analysis, 28 of 77 SASP proteins were significantly associated with age. Of the 28 age-associated SASP proteins, 18 were significantly associated with 1 or more clinical traits, and 7 SASP proteins were significantly associated with 3 or more traits. Growth/differentiation factor 15, Insulin-like growth factor-binding protein 2, and Cystatin-C showed significant associations with inflammatory markers and measures of physical function (grip strength or gait speed). These results support the relevance of SASP proteins to human aging, identify specific traits that are potentially affected by SASP, and prioritize specific SASP proteins for their utility as biomarkers of human aging.


Subject(s)
Cystatins , Senescence-Associated Secretory Phenotype , Humans , Growth Differentiation Factor 15/metabolism , Insulin-Like Growth Factor Binding Protein 2 , Proteomics , Aging/metabolism , Cellular Senescence/physiology , Phenotype , Cystatins/metabolism
19.
J Am Soc Nephrol ; 35(2): 135-148, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38044490

ABSTRACT

SIGNIFICANCE STATEMENT: In this study, we demonstrate that a common, low-cost compound known as octanedioic acid (DC 8 ) can protect mice from kidney damage typically caused by ischemia-reperfusion injury or the chemotherapy drug cisplatin. This compound seems to enhance peroxisomal activity, which is responsible for breaking down fats, without adversely affecting mitochondrial function. DC 8 is not only affordable and easy to administer but also effective. These encouraging findings suggest that DC 8 could potentially be used to assist patients who are at risk of experiencing this type of kidney damage. BACKGROUND: Proximal tubules are rich in peroxisomes, which are damaged during AKI. Previous studies demonstrated that increasing peroxisomal fatty acid oxidation (FAO) is renoprotective, but no therapy has emerged to leverage this mechanism. METHODS: Mice were fed with either a control diet or a diet enriched with dicarboxylic acids, which are peroxisome-specific FAO substrates, then subjected to either ischemia-reperfusion injury-AKI or cisplatin-AKI models. Biochemical, histologic, genetic, and proteomic analyses were performed. RESULTS: Both octanedioic acid (DC 8 ) and dodecanedioic acid (DC 12 ) prevented the rise of AKI markers in mice that were exposed to renal injury. Proteomics analysis demonstrated that DC 8 preserved the peroxisomal and mitochondrial proteomes while inducing extensive remodeling of the lysine succinylome. This latter finding indicates that DC 8 is chain shortened to the anaplerotic substrate succinate and that peroxisomal FAO was increased by DC 8 . CONCLUSIONS: DC 8 supplementation protects kidney mitochondria and peroxisomes and increases peroxisomal FAO, thereby protecting against AKI.


Subject(s)
Acute Kidney Injury , Dicarboxylic Acids , Dietary Supplements , Reperfusion Injury , Animals , Humans , Mice , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Cisplatin , Dicarboxylic Acids/administration & dosage , Fatty Acids , Proteomics , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology
20.
Neurobiol Dis ; 190: 106367, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042508

ABSTRACT

X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.


Subject(s)
Dystonia , Dystonic Disorders , Neurodegenerative Diseases , Parkinsonian Disorders , Humans , Dystonia/genetics , Dystonia/metabolism , Neurodegenerative Diseases/metabolism , Proteomics , Transcription Factor TFIID/genetics , Dystonic Disorders/genetics , Dystonic Disorders/metabolism , Neurons/metabolism , RNA, Messenger/metabolism , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...