Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Elife ; 122024 Feb 26.
Article En | MEDLINE | ID: mdl-38407174

The Hydra nervous system is the paradigm of a 'simple nerve net'. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.


Cnidaria , Hydra , Animals , Nerve Net , Neurons , Neurites
2.
Cell Rep ; 34(9): 108805, 2021 03 02.
Article En | MEDLINE | ID: mdl-33657383

During cell division, the guanine nucleotide exchange factor (GEF) ECT2 activates RhoA in a narrow zone at the cell equator in anaphase. ECT2 consists of three BRCT domains (BRCT0, 1, and 2), a catalytic GEF, and a pleckstrin homology (PH) domain. How the conserved BRCT domains spatially and temporally control ECT2 activity remains unclear. We reveal that each BRCT domain makes distinct contributions to the ECT2 function. We find that BRCT0 contributes to, and BRCT1 is essential for, ECT2 activation in anaphase. BRCT2 integrates two functions: GEF inhibition and RACGAP1 binding, which together limit ECT2 activity to a narrow zone at the cell equator. BRCT2-dependent control of active RhoA zone dimension functions in addition to the inhibitory signal of the astral microtubules. Our analysis provides detailed mechanistic insights into how ECT2 activity is regulated and how that regulation ensures, together with other signaling pathways, successful cell division.


Cytokinesis , Guanine Nucleotide Exchange Factors/metabolism , Proto-Oncogene Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , HeLa Cells , Humans , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Polo-Like Kinase 1
3.
Cell Rep ; 28(7): 1659-1669.e5, 2019 08 13.
Article En | MEDLINE | ID: mdl-31412237

The induction of the mitochondrial unfolded protein response (UPRmt) results in increased transcription of the gene encoding the mitochondrial chaperone HSP70. We systematically screened the C. elegans genome and identified 171 genes that, when knocked down, induce the expression of an hsp-6 HSP70 reporter and encode mitochondrial proteins. These genes represent many, but not all, mitochondrial processes (e.g., mitochondrial calcium homeostasis and mitophagy are not represented). Knockdown of these genes leads to reduced mitochondrial membrane potential and, hence, decreased protein import into mitochondria. In addition, it induces UPRmt in a manner that is dependent on ATFS-1 but that is not antagonized by the kinase GCN-2. We propose that compromised mitochondrial protein import signals the induction of UPRmt and that the mitochondrial targeting sequence of ATFS-1 functions as a sensor for this signal.


Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Calcium/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Kinases/metabolism , Transcription Factors/metabolism , Unfolded Protein Response , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Membrane Potential, Mitochondrial , Mitochondria/pathology , Mitochondrial Proteins/genetics , Protein Kinases/genetics , Protein Transport , Stress, Physiological , Transcription Factors/genetics
...