Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
EBioMedicine ; 105: 105231, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959848

ABSTRACT

BACKGROUND: The clinical heterogeneity of myasthenia gravis (MG), an autoimmune disease defined by antibodies (Ab) directed against the postsynaptic membrane, constitutes a challenge for patient stratification and treatment decision making. Novel strategies are needed to classify patients based on their biological phenotypes aiming to improve patient selection and treatment outcomes. METHODS: For this purpose, we assessed the serum proteome of a cohort of 140 patients with anti-acetylcholine receptor-Ab-positive MG and utilised consensus clustering as an unsupervised tool to assign patients to biological profiles. For in-depth analysis, we used immunogenomic sequencing to study the B cell repertoire of a subgroup of patients and an in vitro assay using primary human muscle cells to interrogate serum-induced complement formation. FINDINGS: This strategy identified four distinct patient phenotypes based on their proteomic patterns in their serum. Notably, one patient phenotype, here named PS3, was characterised by high disease severity and complement activation as defining features. Assessing a subgroup of patients, hyperexpanded antibody clones were present in the B cell repertoire of the PS3 group and effectively activated complement as compared to other patients. In line with their disease phenotype, PS3 patients were more likely to benefit from complement-inhibiting therapies. These findings were validated in a prospective cohort of 18 patients using a cell-based assay. INTERPRETATION: Collectively, this study suggests proteomics-based clustering as a gateway to assign patients to a biological signature likely to benefit from complement inhibition and provides a stratification strategy for clinical practice. FUNDING: CN and CBS were supported by the Forschungskommission of the Medical Faculty of the Heinrich Heine University Düsseldorf. CN was supported by the Else Kröner-Fresenius-Stiftung (EKEA.38). CBS was supported by the Deutsche Forschungsgemeinschaft (DFG-German Research Foundation) with a Walter Benjamin fellowship (project 539363086). The project was supported by the Ministry of Culture and Science of North Rhine-Westphalia (MODS, "Profilbildung 2020" [grant no. PROFILNRW-2020-107-A]).

2.
Acta Neuropathol ; 147(1): 102, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38888758

ABSTRACT

Myasthenia gravis is a chronic antibody-mediated autoimmune disease disrupting neuromuscular synaptic transmission. Informative biomarkers remain an unmet need to stratify patients with active disease requiring intensified monitoring and therapy; their identification is the primary objective of this study. We applied mass spectrometry-based proteomic serum profiling for biomarker discovery. We studied an exploration and a prospective validation cohort consisting of 114 and 140 anti-acetylcholine receptor antibody (AChR-Ab)-positive myasthenia gravis patients, respectively. For downstream analysis, we applied a machine learning approach. Protein expression levels were confirmed by ELISA and compared to other myasthenic cohorts, in addition to myositis and neuropathy patients. Anti-AChR-Ab levels were determined by a radio receptor assay. Immunohistochemistry and immunofluorescence of intercostal muscle biopsies were employed for validation in addition to interactome studies of inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3). Machine learning identified ITIH3 as potential serum biomarker reflective of disease activity. Serum levels correlated with disease activity scores in the exploration and validation cohort and were confirmed by ELISA. Lack of correlation between anti-AChR-Ab levels and clinical scores underlined the need for biomarkers. In a subgroup analysis, ITIH3 was indicative of treatment responses. Immunostaining of muscle specimens from these patients demonstrated ITIH3 localization at the neuromuscular endplates in myasthenia gravis but not in controls, thus providing a structural equivalent for our serological findings. Immunoprecipitation of ITIH3 and subsequent proteomics lead to identification of its interaction partners playing crucial roles in neuromuscular transmission. This study provides data on ITIH3 as a potential pathophysiological-relevant biomarker of disease activity in myasthenia gravis. Future studies are required to facilitate translation into clinical practice.


Subject(s)
Biomarkers , Myasthenia Gravis , Humans , Myasthenia Gravis/blood , Myasthenia Gravis/diagnosis , Myasthenia Gravis/pathology , Myasthenia Gravis/metabolism , Biomarkers/blood , Biomarkers/metabolism , Male , Female , Middle Aged , Adult , Aged , Autoantibodies/blood , Receptors, Cholinergic/immunology , Receptors, Cholinergic/metabolism , Proteomics/methods , Cohort Studies , Young Adult , Proteinase Inhibitory Proteins, Secretory/blood , Machine Learning
3.
Ophthalmologie ; 121(7): 540-547, 2024 Jul.
Article in German | MEDLINE | ID: mdl-38904720

ABSTRACT

Myasthenia gravis is a well-understood autoimmune disease of the neuromuscular synapse that is medicinally treatable with favorable results and therefore should not be overlooked in the differential diagnostic evaluation of vertical diplopia. Myasthenia is primarily a clinical diagnosis. Positive indications include double vision of fluctuating severity, diurnal variations, double vision after lengthy gaze fixation on a distant object and in the primary position as well as diplopia in various visual directions, often associated with a varying extent of ptosis. Clinical tests are the Simpson test, the ice on eyes test and the probatory administration of pyridostigmine. Positive results corroborate this diagnosis but negative results do not exclude myasthenia. The same applies for the determination of specific autoantibodies. In addition to ocular symptoms it is important to search for generalized symptoms and bulbopharyngeal symptoms in particular should prompt immediate neurological diagnostics. In addition to symptomatic treatment a wide range of immunotherapeutic agents are available. Thymectomy is also used for immunomodulatory indications according to the 2023 revised guidelines. Patient-centered treatment goals, patient education and comprehensive information, also via the self-help organization German Myasthenia Society, are essential components of successful treatment of myasthenia.


Subject(s)
Diplopia , Myasthenia Gravis , Humans , Diplopia/etiology , Diplopia/diagnosis , Myasthenia Gravis/diagnosis , Myasthenia Gravis/therapy , Myasthenia Gravis/complications , Aged , Diagnosis, Differential , Aged, 80 and over , Thymectomy , Female , Male
4.
Nat Commun ; 15(1): 4120, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750052

ABSTRACT

5q-associated spinal muscular atrophy (SMA) is a motoneuron disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Adaptive immunity may contribute to SMA as described in other motoneuron diseases, yet mechanisms remain elusive. Nusinersen, an antisense treatment, enhances SMN2 expression, benefiting SMA patients. Here we have longitudinally investigated SMA and nusinersen effects on local immune responses in the cerebrospinal fluid (CSF) - a surrogate of central nervous system parenchyma. Single-cell transcriptomics (SMA: N = 9 versus Control: N = 9) reveal NK cell and CD8+ T cell expansions in untreated SMA CSF, exhibiting activation and degranulation markers. Spatial transcriptomics coupled with multiplex immunohistochemistry elucidate cytotoxicity near chromatolytic motoneurons (N = 4). Post-nusinersen treatment, CSF shows unaltered protein/transcriptional profiles. These findings underscore cytotoxicity's role in SMA pathogenesis and propose it as a therapeutic target. Our study illuminates cell-mediated cytotoxicity as shared features across motoneuron diseases, suggesting broader implications.


Subject(s)
Brain , Killer Cells, Natural , Motor Neurons , Muscular Atrophy, Spinal , Oligonucleotides , Humans , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/genetics , Motor Neurons/drug effects , Motor Neurons/pathology , Motor Neurons/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Brain/pathology , Brain/drug effects , Female , Male , Survival of Motor Neuron 2 Protein/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Single-Cell Analysis , Cytotoxicity, Immunologic/drug effects , Infant , Child, Preschool , Child , Transcriptome
5.
Cells ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38534352

ABSTRACT

Myasthenia gravis (MG) is a prototypical autoimmune disease of the neuromuscular junction (NMJ). The study of the underlying pathophysiology has provided novel insights into the interplay of autoantibodies and complement-mediated tissue damage. Experimental autoimmune myasthenia gravis (EAMG) emerged as a valuable animal model, designed to gain further insight and to test novel therapeutic approaches for MG. However, the availability of native acetylcholine receptor (AChR) protein is limited favouring the use of recombinant proteins. To provide a simplified platform for the study of MG, we established a model of EAMG using a recombinant protein containing the immunogenic sequence of AChR in mice. This model recapitulates key features of EAMG, including fatigable muscle weakness, the presence of anti-AChR-antibodies, and engagement of the NMJ by complement and a reduced NMJ density. Further characterization of this model demonstrated a prominent B cell immunopathology supported by T follicular helper cells. Taken together, the herein-presented EAMG model may be a valuable tool for the study of MG pathophysiology and the pre-clinical testing of therapeutic applications.


Subject(s)
Myasthenia Gravis, Autoimmune, Experimental , Receptors, Cholinergic , Mice , Animals , Myasthenia Gravis, Autoimmune, Experimental/drug therapy , Myasthenia Gravis, Autoimmune, Experimental/metabolism , Neuromuscular Junction/pathology , Complement System Proteins , Autoantibodies , Immunization
6.
Int J Mol Sci ; 25(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255863

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) of still unclear etiology. In recent years, the search for biomarkers facilitating its diagnosis, prognosis, therapy response, and other parameters has gained increasing attention. In this regard, in a previous meta-analysis comprising 22 studies, we found that MS is associated with higher nitrite/nitrate (NOx) levels in the cerebrospinal fluid (CSF) compared to patients with non-inflammatory other neurological diseases (NIOND). However, many of the included studies did not distinguish between the different clinical subtypes of MS, included pre-treated patients, and inclusion criteria varied. As a follow-up to our meta-analysis, we therefore aimed to analyze the serum and CSF NOx levels in clinically well-defined cohorts of treatment-naïve MS patients compared to patients with somatic symptom disorder. To this end, we analyzed the serum and CSF levels of NOx in 117 patients (71 relapsing-remitting (RR) MS, 16 primary progressive (PP) MS, and 30 somatic symptom disorder). We found that RRMS and PPMS patients had higher serum NOx levels compared to somatic symptom disorder patients. This difference remained significant in the subgroup of MRZ-negative RRMS patients. In conclusion, the measurement of NOx in the serum might indeed be a valuable tool in supporting MS diagnosis.


Subject(s)
Autoimmune Diseases , Medically Unexplained Symptoms , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnosis , Nitrosative Stress , Central Nervous System
7.
Acta Neuropathol ; 147(1): 15, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38214778

ABSTRACT

Histopathological analysis stands as the gold standard for the identification and differentiation of inflammatory neuromuscular diseases. These disorders continue to constitute a diagnostic challenge due to their clinical heterogeneity, rarity and overlapping features. To establish standardized protocols for the diagnosis of inflammatory neuromuscular diseases, the development of cost-effective and widely applicable tools is crucial, especially in settings constrained by limited resources. The focus of this review is to emphasize the diagnostic value of major histocompatibility complex (MHC) and complement patterns in the immunohistochemical analysis of these diseases. We explore the immunological background of MHC and complement signatures that characterize inflammatory features, with a specific focus on idiopathic inflammatory myopathies. With this approach, we aim to provide a diagnostic algorithm that may improve and simplify the diagnostic workup based on a limited panel of stainings. Our approach acknowledges the current limitations in the field of inflammatory neuromuscular diseases, particularly the scarcity of large-scale, prospective studies that validate the diagnostic potential of these markers. Further efforts are needed to establish a consensus on the diagnostic protocol to effectively distinguish these diseases.


Subject(s)
Myositis , Neuromuscular Diseases , Humans , Prospective Studies , Neuromuscular Diseases/diagnosis , Major Histocompatibility Complex , Histocompatibility Antigens Class I/analysis
8.
J Autoimmun ; 142: 103136, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37935063

ABSTRACT

K2P2.1 (TREK1), a two-pore domain potassium channel, has emerged as regulator of leukocyte transmigration into the central nervous system. In the context of skeletal muscle, immune cell infiltration constitutes the pathogenic hallmark of idiopathic inflammatory myopathies (IIMs). However, the underlying mechanisms remain to be elucidated. In this study, we investigated the role of K2P2.1 in the autoimmune response of IIMs. We detected K2P2.1 expression in primary skeletal muscle and endothelial cells of murine and human origin. We observed an increased pro-inflammatory cell response, adhesion and transmigration by pharmacological blockade or genetic deletion of K2P2.1 in vitro and in in vivo myositis mouse models. Of note, our findings were not restricted to endothelial cells as skeletal muscle cells with impaired K2P2.1 function also demonstrated a strong pro-inflammatory response. Conversely, these features were abrogated by activation of K2P2.1 and improved the disease course of a myositis mouse model. In humans, K2P2.1 expression was diminished in IIM patients compared to non-diseased controls arguing for the translatability of our findings. In summary, K2P2.1 may regulate the inflammatory response of skeletal muscle. Further research is required to understand whether K2P2.1 could serve as novel therapeutic target.


Subject(s)
Endothelial Cells , Myositis , Humans , Animals , Mice , Endothelial Cells/pathology , Myositis/genetics , Muscle, Skeletal/pathology , Leukocytes/pathology
9.
Cells ; 12(20)2023 10 15.
Article in English | MEDLINE | ID: mdl-37887300

ABSTRACT

Inflammatory neuromuscular disorders encompass a diverse group of immune-mediated diseases with varying clinical manifestations and treatment responses. The identification of specific biomarkers has the potential to provide valuable insights into disease pathogenesis, aid in accurate diagnosis, predict disease course, and monitor treatment efficacy. However, the rarity and heterogeneity of these disorders pose significant challenges in the identification and implementation of reliable biomarkers. Here, we aim to provide a comprehensive review of biomarkers currently established in Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), myasthenia gravis (MG), and idiopathic inflammatory myopathy (IIM). It highlights the existing biomarkers in these disorders, including diagnostic, prognostic, predictive and monitoring biomarkers, while emphasizing the unmet need for additional specific biomarkers. The limitations and challenges associated with the current biomarkers are discussed, and the potential implications for disease management and personalized treatment strategies are explored. Collectively, biomarkers have the potential to improve the management of inflammatory neuromuscular disorders. However, novel strategies and further research are needed to establish clinically meaningful biomarkers.


Subject(s)
Guillain-Barre Syndrome , Immune System Diseases , Myasthenia Gravis , Neuromuscular Diseases , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/therapy , Guillain-Barre Syndrome/therapy , Myasthenia Gravis/diagnosis , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnosis , Biomarkers
10.
J Vis Exp ; (200)2023 10 06.
Article in English | MEDLINE | ID: mdl-37870321

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is the most common murine model for multiple sclerosis (MS) and is frequently used to further elucidate the still unknown etiology of MS in order to develop new treatment strategies. The myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55) EAE model reproduces a self-limiting monophasic disease course with ascending paralysis within 10 days after immunization. The mice are examined daily using a clinical scoring system. MS is driven by different pathomechanisms with a specific temporal pattern, thus the investigation of the role of central nervous system (CNS)-resident cell types during disease progression is of great interest. The unique feature of this protocol is the simultaneous isolation of all principal CNS-resident cell types (microglia, oligodendrocytes, astrocytes, and neurons) applicable in adult EAE and healthy mice. The dissociation of the brain and the spinal cord from adult mice is followed by magnetic-activated cell sorting (MACS) to isolate microglia, oligodendrocytes, astrocytes, and neurons. Flow cytometry was used to perform quality analyses of the purified single-cell suspensions confirming viability after cell isolation and indicating the purity of each cell type of approximately 90%. In conclusion, this protocol offers a precise and comprehensive way to analyze complex cellular networks in healthy and EAE mice. Moreover, required mice numbers can be substantially reduced as all four cell types are isolated from the same mice.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Encephalomyelitis , Multiple Sclerosis , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/etiology , Mice, Inbred C57BL , Central Nervous System/metabolism , Spinal Cord/metabolism , Myelin-Oligodendrocyte Glycoprotein , Encephalomyelitis/complications , Peptide Fragments
11.
Acta Neuropathol ; 146(5): 725-745, 2023 11.
Article in English | MEDLINE | ID: mdl-37773216

ABSTRACT

Inclusion body myositis (IBM) is unique across the spectrum of idiopathic inflammatory myopathies (IIM) due to its distinct clinical presentation and refractoriness to current treatment approaches. One explanation for this resistance may be the engagement of cell-autonomous mechanisms that sustain or promote disease progression of IBM independent of inflammatory activity. In this study, we focused on senescence of tissue-resident cells as potential driver of disease. For this purpose, we compared IBM patients to non-diseased controls and immune-mediated necrotizing myopathy patients. Histopathological analysis suggested that cellular senescence is a prominent feature of IBM, primarily affecting non-myogenic cells. In-depth analysis by single nuclei RNA sequencing allowed for the deconvolution and study of muscle-resident cell populations. Among these, we identified a specific cluster of fibro-adipogenic progenitors (FAPs) that demonstrated key hallmarks of senescence, including a pro-inflammatory secretome, expression of p21, increased ß-galactosidase activity, and engagement of senescence pathways. FAP function is required for muscle cell health with changes to their phenotype potentially proving detrimental. In this respect, the transcriptomic landscape of IBM was also characterized by changes to the myogenic compartment demonstrating a pronounced loss of type 2A myofibers and a rarefication of acetylcholine receptor expressing myofibers. IBM muscle cells also engaged a specific pro-inflammatory phenotype defined by intracellular complement activity and the expression of immunogenic surface molecules. Skeletal muscle cell dysfunction may be linked to FAP senescence by a change in the collagen composition of the latter. Senescent FAPs lose collagen type XV expression, which is required to support myofibers' structural integrity and neuromuscular junction formation in vitro. Taken together, this study demonstrates an altered phenotypical landscape of muscle-resident cells and that FAPs, and not myofibers, are the primary senescent cell type in IBM.


Subject(s)
Myositis, Inclusion Body , Myositis , Humans , Myositis, Inclusion Body/metabolism , Adipogenesis , Collagen/metabolism , Muscle, Skeletal/metabolism
12.
Front Immunol ; 14: 1198860, 2023.
Article in English | MEDLINE | ID: mdl-37600819

ABSTRACT

Introduction: Given its wide availability and cost-effectiveness, multidimensional flow cytometry (mFC) became a core method in the field of immunology allowing for the analysis of a broad range of individual cells providing insights into cell subset composition, cellular behavior, and cell-to-cell interactions. Formerly, the analysis of mFC data solely relied on manual gating strategies. With the advent of novel computational approaches, (semi-)automated gating strategies and analysis tools complemented manual approaches. Methods: Using Bayesian network analysis, we developed a mathematical model for the dependencies of different obtained mFC markers. The algorithm creates a Bayesian network that is a HC tree when including raw, ungated mFC data of a randomly selected healthy control cohort (HC). The HC tree is used to classify whether the observed marker distribution (either patients with amyotrophic lateral sclerosis (ALS) or HC) is predicted. The relative number of cells where the probability q is equal to zero is calculated reflecting the similarity in the marker distribution between a randomly chosen mFC file (ALS or HC) and the HC tree. Results: Including peripheral blood mFC data from 68 ALS and 35 HC, the algorithm could correctly identify 64/68 ALS cases. Tuning of parameters revealed that the combination of 7 markers, 200 bins, and 20 patients achieved the highest AUC on a significance level of p < 0.0001. The markers CD4 and CD38 showed the highest zero probability. We successfully validated our approach by including a second, independent ALS and HC cohort (55 ALS and 30 HC). In this case, all ALS were correctly identified and side scatter and CD20 yielded the highest zero probability. Finally, both datasets were analyzed by the commercially available algorithm 'Citrus', which indicated superior ability of Bayesian network analysis when including raw, ungated mFC data. Discussion: Bayesian network analysis might present a novel approach for classifying mFC data, which does not rely on reduction techniques, thus, allowing to retain information on the entire dataset. Future studies will have to assess the performance when discriminating clinically relevant differential diagnoses to evaluate the complementary diagnostic benefit of Bayesian network analysis to the clinical routine workup.


Subject(s)
Amyotrophic Lateral Sclerosis , Flow Cytometry , Flow Cytometry/classification , Flow Cytometry/methods , Bayes Theorem , Algorithms , Amyotrophic Lateral Sclerosis/diagnosis , Humans , Models, Theoretical , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over
13.
Neurol Res Pract ; 5(1): 39, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37612774

ABSTRACT

INTRODUCTION: Chronic inflammatory demyelinating polyneuropathy (CIDP) is one of the most common immune neuropathies leading to severe impairments in daily life. Current treatment options include intravenous immunoglobulins (IVIG), which are administered at intervals of 4-12 weeks. Determination of individual treatment intervals is challenging since existing clinical scores lack sensitivity to objectify small, partially fluctuating deficits in patients. End-of-dose phenomena described by patients, manifested by increased fatigue and worsening of (motor) symptoms, are currently difficult to detect. From a medical and socio-economic point of view, it is necessary to identify and validate new, more sensitive outcome measures for accurate mapping of disease progression and, thus, for interval finding. Digital health technologies such as wearables may be particularly useful for this purpose, as they record real-life data and consequently, in contrast to classic clinical 'snapshots', can continuously depict the disease course. METHODS: In this prospective, observational, non-interventional, single-center, investigator-initiated study, CIDP patients treated with IVIG will be continuously monitored over a period of 6 months. Clinical scores and blood analyses will be assessed and collected during three visits (V1, V2, V3). Additionally, activity, sleep, and cardiac parameters will be recorded over the entire period using a wearable device. Further, patients' subjective disease development and quality of life will be recorded at various visits (read-outs). The usability of the smartwatch will be assessed at the end of the study. PERSPECTIVE: The study aims to evaluate different digital measurements obtained with the smartwatch and blood-based analyses for monitoring disease activity and progress in CIDP patients. In conjunction, both means of monitoring might offer detailed insights into behavioral and biological patterns associated with treatment-related fluctuations such as end-of-dose phenomena. TRIAL REGISTRATION: The study protocol was registered at ClinicalTrials.gov. Identifier: NCT05723848. Initially, the protocol was submitted prospectively on January 10, 2023. The trial was publicly released after formal improvements on February 13, 2023, after first patients were included according to the original protocol.

14.
J Am Heart Assoc ; 12(12): e029529, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37301761

ABSTRACT

Background Typically defined as a thromboinflammatory disease, ischemic stroke features early and delayed inflammatory responses, which determine the extent of ischemia-related brain damage. T and natural killer cells have been implicated in neuronal cytotoxicity and inflammation, but the precise mechanisms of immune cell-mediated stroke progression remain poorly understood. The activating immunoreceptor NKG2D is expressed on both natural killer and T cells and may be critically involved. Methods and Results An anti-NKG2D blocking antibody alleviated stroke outcome in terms of infarct volume and functional deficits, coinciding with reduced immune cell infiltration into the brain and improved survival in the animal model of cerebral ischemia. Using transgenic knockout models devoid of certain immune cell types and immunodeficient mice supplemented with different immune cell subsets, we dissected the functional contribution of NKG2D signaling by different NKG2D-expressing cells in stroke pathophysiology. The observed effect of NKG2D signaling in stroke progression was shown to be predominantly mediated by natural killer and CD8+ T cells. Transfer of T cells with monovariant T-cell receptors into immunodeficient mice with and without pharmacological blockade of NKG2D revealed activation of CD8+ T cells irrespective of antigen specificity. Detection of the NKG2D receptor and its ligands in brain samples of patients with stroke strengthens the relevance of preclinical observations in human disease. Conclusions Our findings provide a mechanistic insight into NKG2D-dependent natural killer- and T-cell-mediated effects in stroke pathophysiology.


Subject(s)
Brain Ischemia , Stroke , Humans , Mice , Animals , CD8-Positive T-Lymphocytes , Killer Cells, Natural/metabolism , Signal Transduction , Brain Ischemia/metabolism , Cerebral Infarction , Stroke/metabolism
15.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: mdl-37227781

ABSTRACT

Therapeutic strategies targeting complement have revolutionized the treatment of myasthenia gravis (MG). However, a deeper understanding of complement modulation in the human system is required to improve treatment responses and identify off-target effects shaping long-term outcomes. For this reason, we studied a cohort of patients with MG treated with either eculizumab or azathioprine as well as treatment-naive patients using a combined proteomics and metabolomics approach. This strategy validated known effects of eculizumab on the terminal complement cascade. Beyond that, eculizumab modulated the serum proteometabolome as distinct pathways were altered in eculizumab-treated patients, including the oxidative stress response, mitogen-activated protein kinase signaling, and lipid metabolism with particular emphasis on arachidonic acid signaling. We detected reduced levels of arachidonate 5-lipoxygenase (ALOX5) and leukotriene A4 in eculizumab-treated patients. Mechanistically, ligation of the C5a receptor (C5aR) is needed for ALOX5 metabolism and generation of downstream leukotrienes. As eculizumab prevents cleavage of C5 into C5a, decreased engagement of C5aR may inhibit ALOX5-mediated synthesis of pro-inflammatory leukotrienes. These findings indicate distinct off-target effects induced by eculizumab, illuminating potential mechanisms of action that may be harnessed to improve treatment outcomes.


Subject(s)
Complement C5 , Myasthenia Gravis , Humans , Complement System Proteins , Complement Activation , Myasthenia Gravis/drug therapy , Receptor, Anaphylatoxin C5a , Leukotrienes
16.
Cell Mol Life Sci ; 80(5): 127, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37081190

ABSTRACT

Hyperexcitability is associated with neuronal dysfunction, cellular death, and consequently neurodegeneration. Redox disbalance can contribute to hyperexcitation and increased reactive oxygen species (ROS) levels are observed in various neurological diseases. NOX4 is an NADPH oxidase known to produce ROS and might have a regulating function during oxidative stress. We, therefore, aimed to determine the role of NOX4 on neuronal firing, hyperexcitability, and hyperexcitability-induced changes in neural network function. Using a multidimensional approach of an in vivo model of hyperexcitability, proteomic analysis, and cellular function analysis of ROS, mitochondrial integrity, and calcium levels, we demonstrate that NOX4 is neuroprotective by regulating ROS and calcium homeostasis and thereby preventing hyperexcitability and consequently neuronal death. These results implicate NOX4 as a potential redox regulator that is beneficial in hyperexcitability and thereby might have an important role in neurodegeneration.


Subject(s)
Calcium , Proteomics , Humans , NADPH Oxidase 4 , NADPH Oxidases/metabolism , Oxidative Stress , Reactive Oxygen Species
17.
Biol Chem ; 404(4): 355-375, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36774650

ABSTRACT

Modulation of two-pore domain potassium (K2P) channels has emerged as a novel field of therapeutic strategies as they may regulate immune cell activation and metabolism, inflammatory signals, or barrier integrity. One of these ion channels is the TWIK-related potassium channel 1 (TREK1). In the current study, we report the identification and validation of new TREK1 activators. Firstly, we used a modified potassium ion channel assay to perform high-throughput-screening of new TREK1 activators. Dose-response studies helped to identify compounds with a high separation between effectiveness and toxicity. Inside-out patch-clamp measurements of Xenopus laevis oocytes expressing TREK1 were used for further validation of these activators regarding specificity and activity. These approaches yielded three substances, E1, B3 and A2 that robustly activate TREK1. Functionally, we demonstrated that these compounds reduce levels of adhesion molecules on primary human brain and muscle endothelial cells without affecting cell viability. Finally, we studied compound A2 via voltage-clamp recordings as this activator displayed the strongest effect on adhesion molecules. Interestingly, A2 lacked TREK1 activation in the tested neuronal cell type. Taken together, this study provides data on novel TREK1 activators that might be employed to pharmacologically modulate TREK1 activity.


Subject(s)
Potassium Channels, Tandem Pore Domain , Humans , Potassium Channels, Tandem Pore Domain/metabolism , Endothelial Cells/metabolism , Neuroinflammatory Diseases , Brain/metabolism , Cell Adhesion Molecules/metabolism
18.
Digit Health ; 9: 20552076231152989, 2023.
Article in English | MEDLINE | ID: mdl-36762020

ABSTRACT

Objective: Due to the growing complexity in monitoring and treatment of many disorders, disease-specific care and research networks offer patients certified healthcare. However, the networks' ability to provide health services close to patients' homes usually remains vague. Digital Health Technologies (DHTs) help to provide better care, especially if implemented in a targeted manner in regions undersupplied by specialised networks. Therefore, we used a car travel time-based isochrone approach to identify care gaps using the example of the neuroinflammation-focused German healthcare and research networks for multiple sclerosis (MS), myasthenia gravis (MG), myositis and immune-mediated neuropathy. Methods: Excellence centres were mapped, and isochrones for 30, 60, 90 and 120 minutes were calculated. The resulting geometric figures were aggregated and used to mask the global human settlement population grid 2019 to estimate German inhabitants that can reach centres within the given periods. Results: While 96.48% of Germans can drive to an MS-focused centre within one hour, coverage is lower for the rare disease networks for MG (48.3%), myositis (43.1%) and immune-mediated neuropathy (56.7%). Within 120 minutes, more than 80% of Germans can reach a centre of any network. Besides the generally worse covered rural regions such as North-Eastern Germany, the rare disease networks also show network-specific regional underrepresentation. Conclusion: An isochrone-based approach helps identify regions where specialised care is hard to reach, which might be especially troublesome in the case of an often disabled patient collective. Patient care could be improved by focusing deployments of disease-specific DHTs on these areas.

19.
Redox Biol ; 59: 102597, 2023 02.
Article in English | MEDLINE | ID: mdl-36599286

ABSTRACT

Tauopathies are a major type of proteinopathies underlying neurodegenerative diseases. Mutations in the tau-encoding MAPT-gene lead to hereditary cases of frontotemporal lobar degeneration (FTLD)-tau, which span a wide phenotypic and pathological spectrum. Some of these mutations, such as the N279K mutation, result in a shift of the physiological 3R/4R ratio towards the more aggregation prone 4R isoform. Other mutations such as V337M cause a decrease in the in vitro affinity of tau to microtubules and a reduced ability to promote microtubule assembly. Whether both mutations address similar downstream signalling cascades remains unclear but is important for potential rescue strategies. Here, we developed a novel and optimised forward programming protocol for the rapid and highly efficient production of pure cultures of glutamatergic cortical neurons from hiPSCs. We apply this protocol to delineate mechanisms of neurodegeneration in an FTLD-tau hiPSC-model consisting of MAPTN279K- or MAPTV337M-mutants and wild-type or isogenic controls. The resulting cortical neurons express MAPT-genotype-dependent dominant proteome clusters regulating apoptosis, ROS homeostasis and mitochondrial function. Related pathways are significantly upregulated in MAPTN279K neurons but not in MAPTV337M neurons or controls. Live cell imaging demonstrates that both MAPT mutations affect excitability of membranes as reflected in spontaneous and stimulus evoked calcium signals when compared to controls, albeit more pronounced in MAPTN279K neurons. These spontaneous calcium oscillations in MAPTN279K neurons triggered mitochondrial hyperpolarisation and fission leading to mitochondrial ROS production, but also ROS production through NOX2 acting together to induce cell death. Importantly, we found that these mechanisms are MAPT mutation-specific and were observed in MAPTN279K neurons, but not in MAPTV337M neurons, supporting a pathological role of the 4R tau isoform in redox disbalance and highlighting MAPT-mutation specific clinicopathological-genetic correlations, which may inform rescue strategies in different MAPT mutations.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Reactive Oxygen Species/metabolism , Frontotemporal Dementia/genetics , tau Proteins/genetics , tau Proteins/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Neurons/metabolism , Mutation , Genotype , Protein Isoforms/metabolism
20.
J Autoimmun ; 135: 102985, 2023 02.
Article in English | MEDLINE | ID: mdl-36621173

ABSTRACT

Autoimmune Encephalitis (AE) spans a group of non-infectious inflammatory conditions of the central nervous system due to an imbalanced immune response. Aiming to elucidate the pathophysiological mechanisms of AE, we applied an unsupervised proteomic approach to analyze the cerebrospinal fluid (CSF) protein profile of AE patients with autoantibodies against N-methyl-d-aspartate receptor (NMDAR) (n = 9), leucine-rich glioma-inactivated protein 1 (LGI1) (n = 9), or glutamate decarboxylase 65 (GAD65) (n = 8) compared to 9 patients with relapsing-remitting multiple sclerosis as inflammatory controls, and 10 patients with somatic symptom disorder as non-inflammatory controls. We found a dysregulation of the complement system, a disbalance between pro-inflammatory and anti-inflammatory proteins on the one hand, and dysregulation of proteins involved in synaptic transmission, synaptogenesis, brain connectivity, and neurodegeneration on the other hand to a different extent in all AE subtypes compared to non-inflammatory controls. Furthermore, elevated levels of several proteases and reduction in protease inhibitors could be detected in all AE subtypes compared to non-inflammatory controls. Moreover, the different AE subtypes showed distinct protein profiles compared to each other and inflammatory controls which may facilitate future identification of disease-specific biomarkers. Overall, CSF proteomics provides insights into the complex pathophysiological mechanisms of AE, including immune dysregulation, neuronal dysfunction, neurodegeneration, and altered protease function.


Subject(s)
Encephalitis , Multiple Sclerosis, Relapsing-Remitting , Humans , Proteomics , Proteins , Autoantibodies
SELECTION OF CITATIONS
SEARCH DETAIL
...