Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 323
1.
Nature ; 629(8010): 201-210, 2024 May.
Article En | MEDLINE | ID: mdl-38600376

Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of haematological malignancies such as acute lymphoblastic leukaemia, B cell lymphoma and multiple myeloma1-4, but the efficacy of CAR T cell therapy in solid tumours has been limited5. This is owing to a number of factors, including the immunosuppressive tumour microenvironment that gives rise to poorly persisting and metabolically dysfunctional T cells. Analysis of anti-CD19 CAR T cells used clinically has shown that positive treatment outcomes are associated with a more 'stem-like' phenotype and increased mitochondrial mass6-8. We therefore sought to identify transcription factors that could enhance CAR T cell fitness and efficacy against solid tumours. Here we show that overexpression of FOXO1 promotes a stem-like phenotype in CAR T cells derived from either healthy human donors or patients, which correlates with improved mitochondrial fitness, persistence and therapeutic efficacy in vivo. This work thus reveals an engineering approach to genetically enforce a favourable metabolic phenotype that has high translational potential to improve the efficacy of CAR T cells against solid tumours.


Forkhead Box Protein O1 , Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Stem Cells , T-Lymphocytes , Humans , Mice , Cell Line, Tumor , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mitochondria/metabolism , Phenotype , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Tumor Microenvironment/immunology , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy
2.
Sci Rep ; 14(1): 8587, 2024 04 13.
Article En | MEDLINE | ID: mdl-38615147

Helicobacter pylori infects approximately half the human population and has an unusual infective niche of the human stomach. Helicobacter pylori is a major cause of gastritis and has been classified as a group 1 carcinogen by the WHO. Treatment involves triple or quadruple antibiotic therapy, but antibiotic resistance is becoming increasingly prevalent. Helicobacter pylori expresses certain blood group related antigens (Lewis system) as a part of its lipopolysaccharide (LPS), which is thought to assist in immune evasion. Additionally, H. pylori LPS participates in adhesion to host cells alongside several adhesion proteins. This study profiled the carbohydrates of H. pylori reference strains (SS1 and 26695) using monoclonal antibodies (mAbs) and lectins, identifying interactions between two carbohydrate-targeting mAbs and multiple lectins. Atomic force microscopy (AFM) scans were used to probe lectin and antibody interactions with the bacterial surfaces. The selected mAb and lectins displayed an increased adhesive force over the surface of the curved H. pylori rods. Furthermore, this study demonstrates the ability of anti-carbohydrate antibodies to reduce the adhesion of H. pylori 26695 to human gastric adenocarcinoma cells via AFM. Targeting bacterial carbohydrates to disrupt crucial adhesion and immune evasion mechanisms represents a promising strategy for combating H. pylori infection.


Blood Group Antigens , Helicobacter Infections , Helicobacter pylori , Humans , Lipopolysaccharides , Polysaccharides , Antibodies, Monoclonal , Lectins
3.
Phys Imaging Radiat Oncol ; 30: 100568, 2024 Apr.
Article En | MEDLINE | ID: mdl-38585372

Background and purpose: The [18]F-fluoroethyl-l-tyrosine (FET) PET in Glioblastoma (FIG) study is an Australian prospective, multi-centre trial evaluating FET PET for newly diagnosed glioblastoma management. The Radiation Oncology credentialing program aimed to assess the feasibility in Radiation Oncologist (RO) derivation of standard-of-care target volumes (TVMR) and hybrid target volumes (TVMR+FET) incorporating pre-defined FET PET biological tumour volumes (BTVs). Materials and methods: Central review and analysis of TVMR and TVMR+FET was undertaken across three benchmarking cases. BTVs were pre-defined by a sole nuclear medicine expert. Intraclass correlation coefficient (ICC) confidence intervals (CIs) evaluated volume agreement. RO contour spatial and boundary agreement were evaluated (Dice similarity coefficient [DSC], Jaccard index [JAC], overlap volume [OV], Hausdorff distance [HD] and mean absolute surface distance [MASD]). Dose plan generation (one case per site) was assessed. Results: Data from 19 ROs across 10 trial sites (54 initial submissions, 8 resubmissions requested, 4 conditional passes) was assessed with an initial pass rate of 77.8 %; all resubmissions passed. TVMR+FET were significantly larger than TVMR (p < 0.001) for all cases. RO gross tumour volume (GTV) agreement was moderate-to-excellent for GTVMR (ICC = 0.910; 95 % CI, 0.708-0.997) and good-to-excellent for GTVMR+FET (ICC = 0.965; 95 % CI, 0.871-0.999). GTVMR+FET showed greater spatial overlap and boundary agreement compared to GTVMR. For the clinical target volume (CTV), CTVMR+FET showed lower average boundary agreement versus CTVMR (MASD: 1.73 mm vs. 1.61 mm, p = 0.042). All sites passed the planning exercise. Conclusions: The credentialing program demonstrated feasibility in successful credentialing of 19 ROs across 10 sites, increasing national expertise in TVMR+FET delineation.

4.
Article En | MEDLINE | ID: mdl-38453729

PURPOSE: The recent development and approval of new diagnostic imaging and therapy approaches in the field of theranostics have revolutionised nuclear medicine practice. To ensure the provision of these new imaging and therapy approaches in a safe and high-quality manner, training of nuclear medicine physicians and qualified specialists is paramount. This is required for trainees who are learning theranostics practice, and for ensuring minimum standards for knowledge and competency in existing practising specialists. METHODS: To address the need for a training curriculum in theranostics that would be utilised at a global level, a Consultancy Meeting was held at the IAEA in May 2023, with participation by experts in radiopharmaceutical therapy and theranostics including representatives of major international organisations relevant to theranostics practice. RESULTS: Through extensive discussions and review of existing curriculum and guidelines, a harmonised training program for theranostics was developed, which aims to ensure safe and high quality theranostics practice in all countries. CONCLUSION: The guiding principles for theranostics training outlined in this paper have immediate relevance for the safe and effective practice of theranostics.

5.
Chem Sci ; 15(9): 3372-3381, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38425522

Selective antibody targeted delivery of α particle emitting actinium-225 to tumors has significant therapeutic potential. This work highlights the design and synthesis of a new bifunctional macrocyclic diazacrown ether chelator, H2MacropaSqOEt, that can be conjugated to antibodies and forms stable complexes with actinium-225. The macrocyclic diazacrown ether chelator incorporates a linker comprised of a short polyethylene glycol fragment and a squaramide ester that allows selective reaction with lysine residues on antibodies to form stable vinylogous amide linkages. This new H2MacropaSqOEt chelator was used to modify a monoclonal antibody, girentuximab (hG250), that binds to carbonic anhydrase IX, an enzyme that is overexpressed on the surface of cancers such as clear cell renal cell carcinoma. This new antibody conjugate (H2MacropaSq-hG250) had an average chelator to antibody ratio of 4 : 1 and retained high affinity for carbonic anhydrase IX. H2MacropaSq-hG250 was radiolabeled quantitatively with [225Ac]AcIII within one minute at room temperature with micromolar concentrations of antibody and the radioactive complex is stable in human serum for >7 days. Evaluation of [225Ac]Ac(MacropaSq-hG250) in a mouse xenograft model, that overexpresses carbonic anhydrase IX, demonstrated a highly significant therapeutic response. It is likely that H2MacropaSqOEt could be used to modify other antibodies providing a readily adaptable platform for other actinium-225 based therapeutics.

6.
Eur J Nucl Med Mol Imaging ; 51(6): 1498-1505, 2024 May.
Article En | MEDLINE | ID: mdl-38319322

BACKGROUND: In the rapidly evolving field of nuclear medicine, the paramount importance of radiation protection, safety, and quality systems cannot be overstated. This document provides a comprehensive analysis of the intricate regulatory frameworks and guidelines, meticulously crafted and updated by national and international regulatory bodies to ensure the utmost safety and efficiency in the practice of nuclear medicine. METHODS: We explore the dynamic nature of these regulations, emphasizing their adaptability in accommodating technological advancements and the integration of nuclear medicine with other medical and scientific disciplines. RESULTS: Audits, both internal and external, are spotlighted for their pivotal role in assessing and ensuring compliance with established standards, promoting a culture of continuous improvement and excellence. We delve into the significant contributions of entities like the International Atomic Energy Agency (IAEA) and relevant professional societies in offering universally applicable guidelines that amalgamate the latest in scientific research, ethical considerations, and practical applicability. CONCLUSIONS: The document underscores the essence of international collaborations in pooling expertise, resources, and insights, fostering a global community of practice where knowledge and innovations are shared. Readers will gain an in-depth understanding of the practical applications, challenges, and opportunities presented by these regulatory frameworks and audit processes. The ultimate goal is to inspire and inform ongoing efforts to enhance safety, quality, and effectiveness in nuclear medicine globally.


Nuclear Medicine , Radiation Protection , Nuclear Medicine/standards , Radiation Protection/standards , Humans , Quality Control , Safety
7.
Article En | MEDLINE | ID: mdl-38340206

PURPOSE: To develop a nuclear medicine specific patient journey audit tool (PJAT) to survey and audit patient journeys in a nuclear medicine department such as staff interaction with patients, equipment, quality of imaging and laboratory procedures, patient protection, infection control and radiation safety, with a view to optimising patient care and providing a high-quality nuclear medicine service. METHODS: The PJAT was developed specifically for use in nuclear medicine practices. Thirty-two questions were formulated in the PJAT to test the department's compliance to the Australian National Safety and Quality Health Service Standards, namely clinical governance, partnering with consumers, preventing and controlling health care infection, medication safety, comprehensive care, communicating for safety, blood management and recognising and responding to acute deterioration. The PJAT was also designed to test our department's adherence to diagnostic reference levels (DRL). A total of 60 patient journey audits were completed for patients presenting for nuclear medicine, positron emission tomography and bone mineral density procedures during a consecutive 4-week period to audit the range of procedures performed. A further 120 audits were captured for common procedures in nuclear medicine and positron emission tomography during the same period. Thus, a total of 180 audits were completed. A subset of 12 patients who presented for blood labelling procedures were audited to solely assess the blood management standard. RESULTS: The audits demonstrated over 85% compliance for the Australian national health standards. One hundred percent compliance was noted for critical aspects such as correct patient identification for the correct procedure prior to radiopharmaceutical administration, adherence to prescribed dose limits and distribution of the report within 24 h of completion of the imaging procedure. CONCLUSION: This PJAT can be applied in nuclear medicine departments to enhance quality programmes and patient care. Austin Health has collaborated with the IAEA to formulate the IAEA PJAT, which is now available globally for nuclear medicine departments to survey patient journeys.

8.
Rheumatol Adv Pract ; 8(1): rkae003, 2024.
Article En | MEDLINE | ID: mdl-38375531

The impact of modern imaging in uncovering the underlying pathology of PMR cannot be understated. Long dismissed as an inflammatory syndrome with links to the large vessel vasculitis giant cell arteritis (GCA), a pathognomonic pattern of musculotendinous inflammation is now attributed to PMR and may be used to confirm its diagnosis. Among the available modalities, 18F-fluorodeoxyglucose (18F-FDG) PET/CT is increasingly recognized for its high sensitivity and specificity, as well as added ability to detect concomitant large vessel GCA and exclude other relevant differentials like infection and malignancy. This atlas provides a contemporary depiction of PMR's pathology and outlines how this knowledge translates into a pattern of findings on whole body 18F-FDG PET/CT that can reliably confirm its diagnosis.

9.
PET Clin ; 19(2): 231-248, 2024 Apr.
Article En | MEDLINE | ID: mdl-38233284

Skin cancers are the most common cancers, with melanoma resulting in the highest cause of death in this category. Accurate clinical, histologic, and imaging staging with fludeoxyglucose positron emission tomography (FDG PET) is most important to guide patient management. Whilst surgical excision with clear margins is the gold-standard treatment for primary cutaneous melanoma, targeted therapies have generated remarkable and rapid clinical responses in melanoma, for which FDG PET also plays an important role in assessment of treatment response and post-therapy surveillance. Non-FDG PET tracers, advanced PET technology, and PET radiomics may potentially change the landscape of the utilization of PET in the imaging of patients with cutaneous malignancies.


Melanoma , Skin Neoplasms , Humans , Melanoma/diagnostic imaging , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/therapy , Fluorodeoxyglucose F18 , Neoplasm Staging , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals
10.
EJNMMI Radiopharm Chem ; 9(1): 2, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38165504

BACKGROUND: Nuclear medicine has made enormous progress in the past decades. However, there are still significant inequalities in patient access among different countries, which could be mitigated by improving access to and availability of radiopharmaceuticals. MAIN BODY: This paper summarises major considerations for a suitable pharmaceutical regulatory framework to facilitate patient access to radiopharmaceuticals. These include the distinct characteristics of radiopharmaceuticals which require dedicated regulations, considering the impact of the variable complexity of radiopharmaceutical preparation, personnel requirements, manufacturing practices and quality assurance, regulatory authority interfaces, communication and training, as well as marketing authorisation procedures to ensure availability of radiopharmaceuticals. Finally, domestic and regional supply to ensure patient access via alternative regulatory pathways, including in-house production of radiopharmaceuticals, is described, and an outlook on regulatory challenges faced by new developments, such as the use of alpha emitters, is provided. CONCLUSIONS: All these considerations are an outcome of a dedicated Technical Meeting organised by the IAEA in 2023 and represent the views and opinions of experts in the field, not those of any regulatory authorities.

11.
Lancet Oncol ; 25(1): e29-e41, 2024 Jan.
Article En | MEDLINE | ID: mdl-38181810

Response Assessment in Neuro-Oncology (RANO) response criteria have been established and were updated in 2023 for MRI-based response evaluation of diffuse gliomas in clinical trials. In addition, PET-based imaging with amino acid tracers is increasingly considered for disease monitoring in both clinical practice and clinical trials. So far, a standardised framework defining timepoints for baseline and follow-up investigations and response evaluation criteria for PET imaging of diffuse gliomas has not been established. Therefore, in this Policy Review, we propose a set of criteria for response assessment based on amino acid PET imaging in clinical trials enrolling participants with diffuse gliomas as defined in the 2021 WHO classification of tumours of the central nervous system. These proposed PET RANO criteria provide a conceptual framework that facilitates the structured implementation of PET imaging into clinical research and, ultimately, clinical routine. To this end, the PET RANO 1.0 criteria are intended to encourage specific investigations of amino acid PET imaging of gliomas.


Glioma , Neurology , Humans , Glioma/diagnostic imaging , Glioma/therapy , Amino Acids , Internal Medicine , Positron-Emission Tomography , Transcription Factors
12.
Eur J Nucl Med Mol Imaging ; 51(5): 1287-1296, 2024 Apr.
Article En | MEDLINE | ID: mdl-38057651

BACKGROUND: Our study aims to explore the current utilisation of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in the diagnostic pathway of pyrexia of unknown origin (PUO) and associated cost of illness in a large tertiary teaching hospital in Australia. METHOD: 1257 febrile patients between June 2016 and September 2022 were retrospectively reviewed. There were 57 patients who met the inclusion criteria of "classical PUO", of which FDG-PET/CT was performed in 31 inpatients, 15 outpatients and 11 inpatients did not have an FDG-PET/CT scan. The patient demographics, clinical characteristics and inpatient cost were analysed, together with the diagnostic performance of FDG-PET/CT and impact on clinical management. RESULT: The mean age, length of stay and total cost of admission were higher for inpatients who received FDG-PET/CT versus those who did not. The median cost per patient-bed-day did not differ between the two groups. Inpatients who received earlier FDG-PET/CTs (≤ 7 days from admission) had shorter length of stays and lower total cost compared to those who received a later scan. A negative FDG-PET/CT scan, demonstrating no serious or life-threatening abnormalities resulted in subsequent discharge from hospital or outpatient clinic in 7/10 (70%) patients. There were 11/40 (28%) scans where ancillary abnormalities were identified, requiring further evaluation. CONCLUSION: FDG-PET/CT showed high diagnostic accuracy and significant impact on patient management in patients with PUO. FDG-PET/CT performed earlier in admission for PUO was associated with shorter length of stay and lower total cost.


Fever of Unknown Origin , Positron Emission Tomography Computed Tomography , Humans , Fluorodeoxyglucose F18 , Retrospective Studies , Fever of Unknown Origin/diagnostic imaging , Positron-Emission Tomography/methods , Cost of Illness , Radiopharmaceuticals
13.
Lancet Oncol ; 25(1): 99-107, 2024 Jan.
Article En | MEDLINE | ID: mdl-38043558

BACKGROUND: The TheraP study reported improved prostate-specific antigen responses with lutetium-177 [177Lu]Lu-PSMA-617 versus cabazitaxel in men with metastatic castration-resistant prostate cancer progressing after docetaxel. In this Article, we report the secondary outcome of overall survival with mature follow-up, and an updated imaging biomarker analysis. We also report the outcomes of participants excluded due to ineligibility on gallium-68 [68Ga]Ga-PSMA-11 and 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET-CT. METHODS: TheraP was an open-label, randomised phase 2 trial at 11 centres in Australia. Eligible participants had metastatic castration-resistant prostate cancer progressing after docetaxel, and PET imaging with [68Ga]Ga-PSMA-11 and 2-[18F]FDG that showed prostate-specific membrane antigen (PSMA)-positive disease and no sites of metastatic disease with discordant 2-[18F]FDG-positive and PSMA-negative findings. Participants were randomly assigned (1:1) to treatment with [177Lu]Lu-PSMA-617 (every 6 weeks for a maximum of six cycles; starting at 8·5 GBq, decreasing by 0.5 GBq to 6·0 GBq for the sixth cycle) versus cabazitaxel (20 mg/m2 every 3 weeks, maximum of ten cycles). Overall survival was analysed by intention-to-treat and summarised as restricted mean survival time (RMST) to account for non-proportional hazards, with a 36-month restriction time corresponding to median follow-up. This trial is registered with ClinicalTrials.gov, NCT03392428, and is complete. FINDINGS: 291 men were registered from Feb 6, 2018, to Sept 3, 2019; after study imaging, 200 were eligible and randomly assigned to treatment with [177Lu]Lu-PSMA-617 (n=99) or cabazitaxel (n=101). After completing study treatment, 20 (20%) participants assigned to cabazitaxel and 32 (32%) assigned to [177Lu]Lu-PSMA-617 were subsequently treated with the alternative regimen. After a median follow-up of 35·7 months (IQR 31·1 to 39·2), 77 (78%) participants had died in the [177Lu]Lu-PSMA-617 group and 70 (69%) participants had died in the cabazitaxel group. Overall survival was similar among those assigned to [177Lu]Lu-PSMA-617 versus those assigned to cabazitaxel (RMST 19·1 months [95% CI 16·9 to 21·4] vs 19·6 months [17·4 to 21·8]; difference -0·5 months [95% CI -3·7 to 2·7]; p=0·77). No additional safety signals were identified with the longer follow-up in this analysis. 80 (27%) of 291 men who were registered after initial eligibility screening were excluded after [68Ga]Ga-PSMA-11 and 2-[18F]FDG PET. In the 61 of these men with follow-up available, RMST was 11·0 months (95% CI 9·0 to 13·1). INTERPRETATION: These results support the use of [177Lu]Lu-PSMA-617 as an alternative to cabazitaxel for PSMA-positive metastatic castration-resistant prostate cancer progressing after docetaxel. We did not find evidence that overall survival differed between the randomised groups. Median overall survival was shorter for men who were excluded because of low PSMA expression or 2-[18F]FDG-discordant disease. FUNDING: Australian and New Zealand Urogenital and Prostate Cancer Trials Group, Prostate Cancer Foundation of Australia, Endocyte (a Novartis company), Australian Nuclear Science and Technology Organization, Movember, It's a Bloke Thing, CAN4CANCER, and The Distinguished Gentleman's Ride.


Gallium Radioisotopes , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Treatment Outcome , Docetaxel/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Australia , Prostate-Specific Antigen
14.
Expert Opin Biol Ther ; 23(11): 1089-1102, 2023.
Article En | MEDLINE | ID: mdl-37955063

INTRODUCTION: Antibody drug conjugates (ADCs) are now a proven therapeutic class for many cancers, combining highly specific targeting with the potency of high effective payloads. This review summarizes the experience with ADCs in brain tumors and examines future paths for their use in these tumors. AREAS COVERED: This review will cover all the key classes of ADCs which have been tested in primary brain tumors, including commentary on the major trials to date. The efficacy of these trials, as well as their limitations, will put in context of the overall landscape of drug development in brain tumors. Importantly, this review will summarize key learnings and insights from these trials that help provide the basis for rational ways in which these drugs can be effectively and appropriate developed for patients with primary brain tumors. EXPERT OPINION: ADC development in brain tumors has occurred in two major phases to date. Key learnings from previous trials provide a strong rationale for the continued development of these drugs for primary brain tumors. However, the unique biology of these tumors requires development strategies specifically tailored to maximize their optimal development.


Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Immunoconjugates , Humans , Immunoconjugates/therapeutic use , Glioblastoma/drug therapy , Brain Neoplasms/drug therapy , Drug Development , Antineoplastic Agents/adverse effects
15.
bioRxiv ; 2023 Oct 19.
Article En | MEDLINE | ID: mdl-37905113

We present a novel quantitative immunoassay for CD63 EVs (extracellular vesicles) and a constituent surface cargo, EGFR and its activity state, that provides a sensitive, selective, fluorophore-free and rapid alternative to current EV-based diagnostic methods. Our sensing design utilizes a charge-gating strategy, with a hydrophilic anion exchange membrane and a charged silica nanoparticle reporter. With sensitivity and robustness enhancement by the ion-depletion action of the membrane, this hydrophilic design with charged reporters minimizes interference from dispersed proteins and fluorophore degradation, thus enabling direct plasma analysis. With a limit of detection of 30 EVs/µL and a high relative sensitivity of 0.01% for targeted proteomic subfractions, our assay enables accurate quantification of the EV marker, CD63, with colocalized EGFR by an operator/sample insensitive universal normalized calibration. Glioblastoma necessitates improved non-invasive diagnostic approaches for early detection and monitoring. Notably, we target both total and "active" EGFR on EVs; with a monoclonal antibody mAb806 that recognizes a normally hidden epitope on overexpressed or mutant variant III EGFR. This approach offers direct glioblastoma detection from untreated human patient samples. Analysis of glioblastoma clinical samples yielded an area-under-the-curve (AUC) value of 0.99 and low p-value of 0.000033, significantly surpassing the performance of existing assays and markers.

16.
Front Oncol ; 13: 1225081, 2023.
Article En | MEDLINE | ID: mdl-37795437

Immune checkpoints limit the activation of the immune system and serve an important homeostatic function but can also restrict immune responses against tumors. Inhibition of specific immune checkpoint proteins such as the B7:CD28 family members programmed cell death protein-1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) has transformed the treatment of various cancers by promoting the anti-tumor activation of immune cells. In contrast to these effects, the V-domain immunoglobulin suppressor of T-cell activation (VISTA) regulates the steady state of the resting immune system and promotes homeostasis by mechanisms distinct from PD-1 and CTLA-4. The effects of VISTA blockade have been shown to include a decrease in myeloid suppression coupled with proinflammatory changes by mechanisms that are separate and distinct from other immune checkpoint proteins; in some preclinical studies these immune effects appear synergistic. Given the potential benefits of VISTA blockade in the context of cancer therapy, the second Annual VISTA Symposium was convened virtually on September 23, 2022, to review new research from investigators and immuno-oncology experts. Discussions in the meeting extended the knowledge of VISTA biology and the effects of VISTA inhibition, particularly on cells of the myeloid lineage and resting T cells, as three candidate anti-VISTA antibodies are in, or nearing, clinical development.

17.
Cancers (Basel) ; 15(18)2023 Sep 20.
Article En | MEDLINE | ID: mdl-37760615

Tumour progression relies on interactions with untransformed cells in the tumour microenvironment (TME), including cancer-associated fibroblasts (CAFs), which promote blood supply, tumour progression, and immune evasion. Eph receptor tyrosine kinases are cell guidance receptors that are most active during development but re-emerge in cancer and are recognised drug targets. EphA3 is overexpressed in a wide range of tumour types, and we previously found expression particularly in stromal and vascular tissues of the TME. To investigate its role in the TME, we generated transgenic mice with inducible shRNA-mediated knockdown of EphA3 expression. EphA3 knockdown was confirmed in aortic mesenchymal stem cells (MSCs), which displayed reduced angiogenic capacity. In mice with syngeneic lung tumours, EphA3 knockdown reduced vasculature and CAF/MSC-like cells in tumours, and inhibited tumour growth, which was confirmed also in a melanoma model. Single cell RNA sequencing analysis of multiple human tumour types confirmed EphA3 expression in CAFs, including in breast cancer, where EphA3 was particularly prominent in perivascular- and myofibroblast-like CAFs. Our results thus indicate expression of the cell guidance receptor EphA3 in distinct CAF subpopulations is important in supporting tumour angiogenesis and tumour growth, highlighting its potential as a therapeutic target.

18.
Eur J Nucl Med Mol Imaging ; 50(13): 3970-3981, 2023 11.
Article En | MEDLINE | ID: mdl-37563351

PURPOSE: The O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET in Glioblastoma (FIG) trial is an Australian prospective, multi-centre study evaluating FET PET for glioblastoma patient management. FET PET imaging timepoints are pre-chemoradiotherapy (FET1), 1-month post-chemoradiotherapy (FET2), and at suspected progression (FET3). Before participant recruitment, site nuclear medicine physicians (NMPs) underwent credentialing of FET PET delineation and image interpretation. METHODS: Sites were required to complete contouring and dynamic analysis by ≥ 2 NMPs on benchmarking cases (n = 6) assessing biological tumour volume (BTV) delineation (3 × FET1) and image interpretation (3 × FET3). Data was reviewed by experts and violations noted. BTV definition includes tumour-to-background ratio (TBR) threshold of 1.6 with crescent-shaped background contour in the contralateral normal brain. Recurrence/pseudoprogression interpretation (FET3) required assessment of maximum TBR (TBRmax), dynamic analysis (time activity curve [TAC] type, time to peak), and qualitative assessment. Intraclass correlation coefficient (ICC) assessed volume agreement, coefficient of variation (CoV) compared maximum/mean TBR (TBRmax/TBRmean) across cases, and pairwise analysis assessed spatial (Dice similarity coefficient [DSC]) and boundary agreement (Hausdorff distance [HD], mean absolute surface distance [MASD]). RESULTS: Data was accrued from 21 NMPs (10 centres, n ≥ 2 each) and 20 underwent review. The initial pass rate was 93/119 (78.2%) and 27/30 requested resubmissions were completed. Violations were found in 25/72 (34.7%; 13/12 minor/major) of FET1 and 22/74 (29.7%; 14/8 minor/major) of FET3 reports. The primary reasons for resubmission were as follows: BTV over-contour (15/30, 50.0%), background placement (8/30, 26.7%), TAC classification (9/30, 30.0%), and image interpretation (7/30, 23.3%). CoV median and range for BTV, TBRmax, and TBRmean were 21.53% (12.00-30.10%), 5.89% (5.01-6.68%), and 5.01% (3.37-6.34%), respectively. BTV agreement was moderate to excellent (ICC = 0.82; 95% CI, 0.63-0.97) with good spatial (DSC = 0.84 ± 0.09) and boundary (HD = 15.78 ± 8.30 mm; MASD = 1.47 ± 1.36 mm) agreement. CONCLUSION: The FIG study credentialing program has increased expertise across study sites. TBRmax and TBRmean were robust, with considerable variability in BTV delineation and image interpretation observed.


Brain Neoplasms , Ficus , Glioblastoma , Nuclear Medicine , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Prospective Studies , Australia , Positron-Emission Tomography/methods , Tyrosine , Magnetic Resonance Imaging
19.
BMJ Open ; 13(8): e071327, 2023 08 04.
Article En | MEDLINE | ID: mdl-37541751

INTRODUCTION: Glioblastoma is the most common aggressive primary central nervous system cancer in adults characterised by uniformly poor survival. Despite maximal safe resection and postoperative radiotherapy with concurrent and adjuvant temozolomide-based chemotherapy, tumours inevitably recur. Imaging with O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) has the potential to impact adjuvant radiotherapy (RT) planning, distinguish between treatment-induced pseudoprogression versus tumour progression as well as prognostication. METHODS AND ANALYSIS: The FET-PET in Glioblastoma (FIG) study is a prospective, multicentre, non-randomised, phase II study across 10 Australian sites and will enrol up to 210 adults aged ≥18 years with newly diagnosed glioblastoma. FET-PET will be performed at up to three time points: (1) following initial surgery and prior to commencement of chemoradiation (FET-PET1); (2) 4 weeks following concurrent chemoradiation (FET-PET2); and (3) within 14 days of suspected clinical and/or radiological progression on MRI (performed at the time of clinical suspicion of tumour recurrence) (FET-PET3). The co-primary outcomes are: (1) to investigate how FET-PET versus standard MRI impacts RT volume delineation and (2) to determine the accuracy and management impact of FET-PET in distinguishing pseudoprogression from true tumour progression. The secondary outcomes are: (1) to investigate the relationships between FET-PET parameters (including dynamic uptake, tumour to background ratio, metabolic tumour volume) and progression-free survival and overall survival; (2) to assess the change in blood and tissue biomarkers determined by serum assay when comparing FET-PET data acquired prior to chemoradiation with other prognostic markers, looking at the relationships of FET-PET versus MRI-determined site/s of progressive disease post chemotherapy treatment with MRI and FET-PET imaging; and (3) to estimate the health economic impact of incorporating FET-PET into glioblastoma management and in the assessment of post-treatment pseudoprogression or recurrence/true progression. Exploratory outcomes include the correlation of multimodal imaging, blood and tumour biomarker analyses with patterns of failure and survival. ETHICS AND DISSEMINATION: The study protocol V.2.0 dated 20 November 2020 has been approved by a lead Human Research Ethics Committee (Austin Health, Victoria). Other clinical sites will provide oversight through local governance processes, including obtaining informed consent from suitable participants. The study will be conducted in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice. Results of the FIG study (TROG 18.06) will be disseminated via relevant scientific and consumer forums and peer-reviewed publications. TRIAL REGISTRATION NUMBER: ANZCTR ACTRN12619001735145.


Brain Neoplasms , Ficus , Glioblastoma , Adult , Humans , Adolescent , Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Glioblastoma/pathology , Positron Emission Tomography Computed Tomography , Tyrosine , Prospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Neoplasm Recurrence, Local/diagnostic imaging , Australia , Positron-Emission Tomography , Magnetic Resonance Imaging , Clinical Trials, Phase II as Topic , Multicenter Studies as Topic
...