Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
BJA Educ ; 24(8): 288-295, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099752
2.
ACS Cent Sci ; 10(6): 1276-1282, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38947197

ABSTRACT

Directing groups guide substitution patterns in organic synthetic schemes, but little is known about pathways to control reactivity patterns, such as regioselectivity, in complex inorganic systems such as bioinorganic cofactors or extended surfaces. Interadsorbate effects are known to encode surface reactivity patterns in inorganic materials, modulating the location and binding strength of ligands. However, owing to limited experimental resolution into complex inorganic structures, there is little opportunity to resolve these effects on the atomic scale. Here, we utilize an atomically precise Fe/Co/Se nanocluster platform, [Fe3(L)2Co6Se8L'6]+ ([1(L)2]+; L = CN t Bu, THF; L' = Ph2PN(-)Tol), in which allosteric interadsorbate effects give rise to pronounced site-differentiation. Using a combination of spectroscopic techniques and single-crystal X-ray diffractometry, we discover that coordination of THF at the ligand-free Fe site in [1(CN t Bu)2]+ sets off a domino effect wherein allosteric through-cluster interactions promote the regioselective dissociation of CN t Bu at a neighboring Fe site. Computational analysis reveals that this active site correlation is a result of delocalized Fe···Se···Co···Se covalent interactions that intertwine edge sites on the same cluster face. This study provides an unprecedented atom-scale glimpse into how interfacial metal-support interactions mediate a collective and regiospecific path for substrate exchange across multiple active sites.

3.
Br J Haematol ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973132

ABSTRACT

Management of immune thrombocytopenia (ITP) beyond initial glucocorticoid therapy is challenging. In this retrospective single-centre cohort study, we compared all ITP patients relapsed or non-responsive to glucocorticoid therapy treated with either continuous TPO-RAs (n = 35) or rituximab induction (n = 20) between 2015 and 2022. While both groups showed high initial complete response rates (CR, 68.6 vs. 80.0%, ns), the overall rate of progression to the next therapy was higher after time-limited rituximab (75.0 vs. 42.9%), resulting in a lower relapse-free survival (median 16.6 vs. 25.8 months, log-rank; p < 0.05). We conclude that both treatments show similar initial efficacy and their ideal duration of therapy warrants further investigation.

4.
Cardiooncology ; 10(1): 43, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014463

ABSTRACT

AIMS: Cancer therapy-related cardiac dysfunction (CTRCD) is a dreaded complication of anthracycline therapy. CTRCD most frequently appears in patients with cardiovascular risk factors (CVR) or known cardiovascular disease. However, limited data exist on incidence and course of anthracycline-induced CTRCD in patients without preexisting risk factors. We therefore aimed to longitudinally investigate a cohort of young women on anthracycline treatment due to breast cancer without cardiovascular risk factors or known cardiovascular disease (NCT03940625). METHODS AND RESULTS: We enrolled 59 women with primary breast cancer and scheduled anthracycline-based therapy, but without CVR or preexisting cardiovascular disease. We conducted a longitudinal assessment before, immediately and 12 months after cancer therapy with general laboratory, electrocardiograms, echocardiography and cardiovascular magnetic resonance (CMR), including myocardial relaxometry with T1, T2 and extracellular volume mapping. Every single patient experienced a drop in CMR-measured left ventricular ejection fraction (LVEF) of 6 ± 3% immediately after cancer therapy. According to the novel definition 32 patients (54.2%) developed CTRCD after 12 months defined by reduction in LVEF, global longitudinal strain (GLS) and/or biomarkers elevation, two of them were symptomatic. Global myocardial T2 relaxation times as well as myocardial mass increased coincidently with a decline in wall-thickening. While T2 values and myocardial mass normalized after 12 months, LVEF and GLS remained impaired. CONCLUSION: In every single patient anthracyclines induce a decline of myocardial contractility, even among patients without pre-existing risk factors for CTRCD. Our data suggest to thoroughly evaluate whether this may lead to an increased risk of future cardiovascular events.

5.
JCO Precis Oncol ; 8: e2400106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39013133

ABSTRACT

PURPOSE: The autosomal dominant cancer predisposition disorders hereditary breast and ovarian cancer (HBOC) and Lynch syndrome (LS) are genetic conditions for which early identification and intervention have a positive effect on the individual and public health. The goals of this study were to determine whether germline genetic screening using exome sequencing could be used to efficiently identify carriers of HBOC and LS. METHODS: Participants were recruited from three geographically and racially diverse sites in the United States (Rochester, MN; Phoenix, AZ; Jacksonville, FL). Participants underwent Exome+ sequencing (Helix Inc, San Mateo, CA) and return of results for specific genetic findings: HBOC (BRCA1 and BRCA1) and LS (MLH1, MSH2, MSH6, PMS2, and EPCAM). Chart review was performed to collect demographics and personal and family cancer history. RESULTS: To date, 44,306 participants have enrolled in Tapestry. Annotation and interpretation of all variants in genes for HBOC and LS resulted in the identification of 550 carriers (prevalence, 1.24%), which included 387 with HBOC (27.2% BRCA1, 42.8% BRCA2) and 163 with LS (12.3% MSH6, 8.8% PMS2, 4.5% MLH1, 3.8% MSH2, and 0.2% EPCAM). More than half of these participants (52.1%) were newly diagnosed carriers with HBOC and LS. In all, 39.2% of HBOC/LS carriers did not satisfy National Comprehensive Cancer Network (NCCN) criteria for genetic evaluation. NCCN criteria were less commonly met in underrepresented minority populations versus self-reported White race (51.5% v 37.5%, P = .028). CONCLUSION: Our results emphasize the need for wider utilization of germline genetic sequencing for enhanced screening and detection of individuals who have LS and HBOC cancer predisposition syndromes.


Subject(s)
Genetic Predisposition to Disease , Humans , Female , Middle Aged , Adult , Male , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Exome Sequencing , Practice Guidelines as Topic , Aged , Genetic Testing/methods , Young Adult , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , Heterozygote
6.
J Extracell Vesicles ; 13(7): e12476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978287

ABSTRACT

The current study analyzed the intersecting biophysical, biochemical, and functional properties of extracellular particles (EPs) with the human immunodeficiency virus type-1 (HIV-1) beyond the currently accepted size range for HIV-1. We isolated five fractions (Frac-A through Frac-E) from HIV-infected cells by sequential differential ultracentrifugation (DUC). All fractions showed a heterogeneous size distribution with median particle sizes greater than 100 nm for Frac-A through Frac-D but not for Frac-E, which contained small EPs with an average size well below 50 nm. Synchronized and released cultures contained large infectious EPs in Frac-A, with markers of amphisomes and viral components. Additionally, Frac-E uniquely contained EPs positive for CD63, HSP70, and HIV-1 proteins. Despite its small average size, Frac-E contained membrane-protected viral integrase, detectable only after SDS treatment, indicating that it is enclosed in vesicles. Single particle analysis with dSTORM further supported these findings as CD63, HIV-1 integrase, and the viral surface envelope (Env) glycoprotein (gp) colocalized on the same Frac-E particles. Surprisingly, Frac-E EPs were infectious, and infectivity was significantly reduced by immunodepleting Frac-E with anti-CD63, indicating the presence of this protein on the surface of infectious small EPs in Frac-E. To our knowledge, this is the first time that extracellular vesicle (EV) isolation methods have identified infectious small HIV-1 particles (smHIV-1) that are under 50 nm. Collectively, our data indicate that the crossroads between EPs and HIV-1 potentially extend beyond the currently accepted biophysical properties of HIV-1, which may have further implications for viral pathogenesis.


Subject(s)
Extracellular Vesicles , HIV Infections , HIV-1 , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/virology , HIV Infections/virology , HIV Infections/metabolism , Virion/metabolism , Ultracentrifugation/methods , T-Lymphocytes/virology , T-Lymphocytes/metabolism , Tetraspanin 30/metabolism , Particle Size
7.
J Biol Chem ; 300(8): 107573, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009340

ABSTRACT

Galectins (Gals), a family of multifunctional glycan-binding proteins, have been traditionally defined as ß-galactoside binding lectins. However, certain members of this family have shown selective affinity toward specific glycan structures including human milk oligosaccharides (HMOs) and blood group antigens. In this work, we explored the affinity of human galectins (particularly Gal-1, -3, -4, -7, and -12) toward a panel of oligosaccharides including HMOs and blood group antigens using a complementary approach based on both experimental and computational techniques. While prototype Gal-1 and Gal-7 exhibited differential affinity for type I versus type II Lac/LacNAc residues and recognized fucosylated neutral glycans, chimera-type Gal-3 showed high binding affinity toward poly-LacNAc structures including LNnH and LNnO. Notably, the tandem-repeat human Gal-12 showed preferential recognition of 3-fucosylated glycans, a unique feature among members of the galectin family. Finally, Gal-4 presented a distinctive glycan-binding activity characterized by preferential recognition of specific blood group antigens, also validated by saturation transfer difference nuclear magnetic resonance experiments. Particularly, we identified oligosaccharide blood group A antigen tetraose 6 (BGA6) as a biologically relevant Gal-4 ligand, which specifically inhibited interleukin-6 secretion induced by this lectin on human peripheral blood mononuclear cells. These findings highlight unique determinants underlying specific recognition of HMOs and blood group antigens by human galectins, emphasizing the biological relevance of Gal-4-BGA6 interactions, with critical implications in the development and regulation of inflammatory responses.

8.
Article in English | MEDLINE | ID: mdl-39042016

ABSTRACT

The pulmonary epithelial glycocalyx is rich in glycosaminoglycans such as hyaluronan and heparan sulfate. Despite their presence, the importance of these glycosaminoglycans in bacterial lung infections remains elusive. To address this, we intranasally inoculated mice with Streptococcus pneumoniae in the presence or absence of enzymes targeting pulmonary hyaluronan and heparan sulfate, followed by characterization of subsequent disease pathology, pulmonary inflammation, and lung barrier dysfunction. Enzymatic degradation of hyaluronan and heparan sulfate exacerbated pneumonia in mice, as evidenced by increased disease scores and alveolar neutrophil recruitment. However, targeting epithelial hyaluronan in combination with Streptococcus pneumoniae infection further exacerbated systemic disease, indicated by elevated splenic bacterial load and plasma levels of pro-inflammatory cytokines. In contrast, enzymatic cleavage of heparan sulfate resulted in increased bronchoalveolar bacterial burden, lung damage and pulmonary inflammation in mice infected with Streptococcus pneumoniae. Accordingly, heparinase-treated mice also exhibited disrupted lung barrier integrity as evidenced by higher alveolar edema scores and vascular protein leakage into the airways. This finding was corroborated in a human alveolus-on-a-chip platform, confirming that heparinase treatment also disrupts the human lung barrier during Streptococcus pneumoniae infection. Notably, enzymatic pre-treatment with either hyaluronidase or heparinase also rendered human epithelial cells more sensitive to pneumococcal-induced barrier disruption, as determined by transepithelial electrical resistance measurements, consistent with our findings in murine pneumonia. Taken together, these findings demonstrate the importance of intact hyaluronan and heparan sulfate in limiting pneumococci-induced damage, pulmonary inflammation, and epithelial barrier function and integrity.

9.
Mol Syst Biol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026103

ABSTRACT

Somatic hypermutation in cancer has gained momentum with the increased use of tumour mutation burden as a biomarker for immune checkpoint inhibitors. Spontaneous deamination of 5-methylcytosine to thymine at CpG dinucleotides is one of the most ubiquitous endogenous mutational processes in normal and cancer cells. Here, we performed a systematic investigation of somatic CpG hypermutation at a pan-cancer level. We studied 30,191 cancer patients and 103 cancer types and developed an algorithm to identify somatic CpG hypermutation. Across cancer types, we observed the highest prevalence in paediatric leukaemia (3.5%), paediatric high-grade glioma (1.7%), and colorectal cancer (1%). We discovered germline variants and somatic mutations in the mismatch repair complex MutSα (MSH2-MSH6) as genetic drivers of somatic CpG hypermutation in cancer, which frequently converged on CpG sites and TP53 driver mutations. We further observe an association between somatic CpG hypermutation and response to immune checkpoint inhibitors. Overall, our study identified novel cancer types that display somatic CpG hypermutation, strong association with MutSα-deficiency, and potential utility in cancer immunotherapy.

10.
J Infect ; 89(2): 106220, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960103

ABSTRACT

OBJECTIVES: Efficacy and safety of letermovir as prophylaxis for clinically significant cytomegalovirus infections (csCVMi) was evaluated in randomised controlled trials while most of the real-world studies are single-centre experiences. METHODS: We performed a retrospective, multi-centre case-control study at six German university hospitals to evaluate clinical experiences in patients receiving CMV prophylaxis with letermovir (n = 200) compared to controls without CMV prophylaxis (n = 200) during a 48-week follow-up period after allogeneic hematopoietic cell transplantation (aHCT). RESULTS: The incidence of csCMVi after aHCT was significantly reduced in the letermovir (34%, n = 68) compared to the control group (56%, n = 112; p < 0.001). Letermovir as CMV prophylaxis (OR 0.362) was found to be the only independent variable associated with the prevention of csCMVi. Patients receiving letermovir showed significantly better survival compared to the control group (HR = 1.735, 95% CI: 1.111-2.712; p = 0.014). Of all csCMVi, 46% (n = 31) occurred after discontinuation of letermovir prophylaxis. Severe neutropenia (<500 neutrophils/µL) on the day of the stem cell infusion was the only independent variable for an increased risk of csCMVi after the end of letermovir prophylaxis. CONCLUSIONS: Our study highlights the preventive effects of letermovir on csCMVi after aHCT. A substantial proportion of patients developed a csCMVi after discontinuation of letermovir. In particular, patients with severe neutropenia require specific attention after drug discontinuation.


Subject(s)
Acetates , Antiviral Agents , Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Quinazolines , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Cytomegalovirus Infections/prevention & control , Female , Middle Aged , Quinazolines/therapeutic use , Retrospective Studies , Antiviral Agents/therapeutic use , Adult , Acetates/therapeutic use , Acetates/administration & dosage , Case-Control Studies , Aged , Transplantation, Homologous/adverse effects , Young Adult , Cytomegalovirus , Adolescent , Germany/epidemiology , Incidence
11.
Nat Commun ; 15(1): 5745, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987239

ABSTRACT

Complications of diabetes are often attributed to glucose and reactive dicarbonyl metabolites derived from glycolysis or gluconeogenesis, such as methylglyoxal. However, in the CNS, neurons and endothelial cells use lactate as energy source in addition to glucose, which does not lead to the formation of methylglyoxal and has previously been considered a safer route of energy consumption than glycolysis. Nevertheless, neurons and endothelial cells are hotspots for the cellular pathology underlying neurological complications in diabetes, suggesting a cause that is distinct from other diabetes complications and independent of methylglyoxal. Here, we show that in clinical and experimental diabetes plasma concentrations of dimethylglyoxal are increased. In a mouse model of diabetes, ilvb acetolactate-synthase-like (ILVBL, HACL2) is the enzyme involved in formation of increased amounts of dimethylglyoxal from lactate-derived pyruvate. Dimethylglyoxal reacts with lysine residues, forms Nε-3-hydroxy-2-butanonelysine (HBL) as an adduct, induces oxidative stress more strongly than other dicarbonyls, causes blood-brain barrier disruption, and can mimic mild cognitive impairment in experimental diabetes. These data suggest dimethylglyoxal formation as a pathway leading to neurological complications in diabetes that is distinct from other complications. Importantly, dimethylglyoxal formation can be reduced using genetic, pharmacological and dietary interventions, offering new strategies for preventing CNS dysfunction in diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Oxidative Stress , Pyruvaldehyde , Pyruvic Acid , Animals , Pyruvaldehyde/metabolism , Humans , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Pyruvic Acid/metabolism , Male , Blood-Brain Barrier/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Female , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology
12.
J Am Chem Soc ; 146(31): 21476-21489, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39042706

ABSTRACT

The dynamics of electron and spin transfer in the radical cation and photogenerated triplet states of a tetramethylbiphenyl-linked zinc-porphyrin dimer were investigated, so as to test the relevant parameters for the design of a single-molecule spin valve and the creation of a novel platform for the photogeneration of high-multiplicity spin states. We used a combination of multiple techniques, including variable-temperature continuous wave EPR, pulsed proton electron-nuclear double resonance (ENDOR), transient EPR, and optical spectroscopy. The conclusions are further supported by density functional theory (DFT) calculations and comparison to reference compounds. The low-temperature cw-EPR and room-temperature near-IR spectra of the dimer monocation demonstrate that the radical cation is spatially localized on one side of the dimer at any point in time, not coherently delocalized over both porphyrin units. The EPR spectra at 298 K reveal rapid hopping of the radical spin density between both sites of the dimer via reversible intramolecular electron transfer. The hyperfine interactions are modulated by electron transfer and can be quantified using ENDOR spectroscopy. This allowed simulation of the variable-temperature cw-EPR spectra with a two-site exchange model and provided information on the temperature-dependence of the electron transfer rate. The electron transfer rates range from about 10.0 MHz at 200 K to about 53.9 MHz at 298 K. The activation enthalpies Δ‡H of the electron transfer were determined as Δ‡H = 9.55 kJ mol-1 and Δ‡H = 5.67 kJ mol-1 in a 1:1:1 solvent mixture of CD2Cl2/toluene-d8/THF-d8 and in 2-methyltetrahydrofuran, respectively, consistent with a Robin-Day class II mixed valence compound. These results indicate that the interporphyrin electronic coupling in a tetramethylbiphenyl-linked porphyrin dimer is suitable for the backbone of a single-molecule spin valve. Investigation of the spin density distribution of the photogenerated triplet state of the Zn-porphyrin dimer reveals localization of the triplet spin density on a nanosecond time scale on one-half of the dimer at 20 K in 2-methyltetrahydrofuran and at 250 K in a polyvinylcarbazole film. This establishes the porphyrin dimer as a molecular platform for the formation of a localized, photogenerated triplet state on one porphyrin unit that is coupled to a second redox-active, ground-state porphyrin unit, which can be explored for the formation of high-multiplicity spin states.

13.
Anesthesiol Clin ; 42(3): 491-502, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39054022

ABSTRACT

Anesthesia clinicians often navigate a delicate balance between maternal and fetal safety. Interventions for at fetal well-being may introduce risks of harm to the mother and raise ethical dilemmas. Emergency procedures often focus on direct fetal safety, sidelining maternal physical and mental well-being. The clash between ethical principles, particularly nonmaleficence and beneficence, often arises, with maternal autonomy guiding decisions. Fetal surgery exemplifies risking maternal health for fetal benefit, whereas emergent cesarean deliveries pose physical and psychological challenges for both the mother and child.


Subject(s)
Anesthesia , Humans , Pregnancy , Female , Anesthesia/methods , Fetus/surgery , Anesthesia, Obstetrical/methods
14.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38913681

ABSTRACT

Natural proteins are frequently marginally stable, and an increase in environmental temperature can easily lead to unfolding. As a result, protein engineering to improve protein stability is an area of intensive research. Nonetheless, since there is usually a high degree of structural homology between proteins from thermophilic organisms and their mesophilic counterparts, the identification of structural determinants for thermoadaptation is challenging. Moreover, in many cases, it has become clear that the success of stabilization strategies is often dependent on the evolutionary history of a protein family. In the last few years, the use of ancestral sequence reconstruction (ASR) as a tool for elucidation of the evolutionary history of functional traits of a protein family has gained strength. Here, we used ASR to trace the evolutionary pathways between mesophilic and thermophilic kinases that participate in the biosynthetic pathway of vitamin B1 in bacteria. By combining biophysics approaches, X-ray crystallography, and molecular dynamics simulations, we found that the thermal stability of these enzymes correlates with their kinetic stability, where the highest thermal/kinetic stability is given by an increase in small hydrophobic amino acids that allow a higher number of interatomic hydrophobic contacts, making this type of interaction the main support for stability in this protein architecture. The results highlight the potential benefits of using ASR to explore the evolutionary history of protein sequence and structure to identify traits responsible for the kinetic and thermal stability of any protein architecture.


Subject(s)
Evolution, Molecular , Molecular Dynamics Simulation , Protein Stability , Crystallography, X-Ray , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Kinetics , Enzyme Stability
15.
J Am Chem Soc ; 146(25): 17318-17324, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869185

ABSTRACT

Covalent organic frameworks (COFs) containing well-defined redox-active groups have become competitive materials for next-generation batteries. Although high potentials and rate performance can be expected, only a few examples of p-type COFs have been reported for charge storage to date with even fewer examples on the use of COFs in multivalent ion batteries. Herein, we report the synthesis of a p-type highly porous and crystalline azatruxene-based COF and its application as a positive electrode material in Li- and Mg-based batteries. When this material is used in Li-based half cells as a COF/carbon nanotube (CNT) electrode, a discharge potential of 3.9 V is obtained with discharge capacities of up to 70 mAh g-1 at a 2 C rate. In Mg batteries using a tetrakis(hexafluoroisopropyloxy)borate electrolyte, cycling proceeds with an average discharge voltage of 2.9 V. Even at a fast current rate of 5 C, the capacity retention amounts to 84% over 1000 cycles.

16.
Article in English | MEDLINE | ID: mdl-38847208

ABSTRACT

Sea squirts (Tunicata) are chordates and develop a swimming larva with a small and defined number of individually identifiable cells. This offers the prospect of connecting specific stimuli to behavioral output and characterizing the neural activity that links these together. Here, we describe the development of a microfluidic chip that allows live larvae of the sea squirt Ciona intestinalis to be immobilized and recorded. By generating transgenic larvae expressing GCaAMP6m in defined cells, we show that calcium ion levels can be recorded from immobilized larvae, while microfluidic control allows larvae to be exposed to specific waterborne stimuli. We trial this on sea water carrying increased levels of carbon dioxide, providing evidence that larvae can sense this gas.

17.
Methods Cell Biol ; 187: 139-174, 2024.
Article in English | MEDLINE | ID: mdl-38705623

ABSTRACT

Array tomography (AT) allows one to localize sub-cellular components within the structural context of cells in 3D through the imaging of serial sections. Using this technique, the z-resolution can be improved physically by cutting ultra-thin sections. Nevertheless, conventional immunofluorescence staining of those sections is time consuming and requires relatively large amounts of costly antibody solutions. Moreover, epitopes are only readily accessible at the section's surface, leaving the volume of the serial sections unlabeled. Localization of receptors at neuronal synapses in 3D in their native cellular ultrastructural context is important for understanding signaling processes. Here, we present in vivo labeling of receptors via fluorophore-coupled tags in combination with super-resolution AT. We present two workflows where we label receptors at the plasma membrane: first, in vivo labeling via microinjection with a setup consisting of readily available components and self-manufactured microscope table equipment and second, live receptor labeling by using a cell-permeable tag. To take advantage of a near-to-native preservation of tissues for subsequent scanning electron microscopy (SEM), we also apply high-pressure freezing and freeze substitution. The advantages and disadvantages of our workflows are discussed.


Subject(s)
Synapses , Tomography , Animals , Synapses/metabolism , Synapses/ultrastructure , Tomography/methods , Imaging, Three-Dimensional/methods , Staining and Labeling/methods , Mice , Microscopy, Electron, Scanning/methods , Fluorescent Dyes/chemistry , Microinjections/methods , Neurons/metabolism , Rats
18.
Neuroscientist ; : 10738584241256277, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813891

ABSTRACT

Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as tactile learning. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.

19.
Neuro Oncol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813990

ABSTRACT

BACKGROUND: Surgical resection is the standard of care for patients with large or symptomatic brain metastases (BMs). Despite improved local control after adjuvant stereotactic radiotherapy, the risk of local failure (LF) persists. Therefore, we aimed to develop and externally validate a pre-therapeutic radiomics-based prediction tool to identify patients at high LF risk. METHODS: Data were collected from A Multicenter Analysis of Stereotactic Radiotherapy to the Resection Cavity of Brain Metastases (AURORA) retrospective study (training cohort: 253 patients from two centers; external test cohort: 99 patients from five centers). Radiomic features were extracted from the contrast-enhancing BM (T1-CE MRI sequence) and the surrounding edema (FLAIR sequence). Different combinations of radiomic and clinical features were compared. The final models were trained on the entire training cohort with the best parameter set previously determined by internal 5-fold cross-validation and tested on the external test set. RESULTS: The best performance in the external test was achieved by an elastic net regression model trained with a combination of radiomic and clinical features with a concordance index (CI) of 0.77, outperforming any clinical model (best CI: 0.70). The model effectively stratified patients by LF risk in a Kaplan-Meier analysis (p < 0.001) and demonstrated an incremental net clinical benefit. At 24 months, we found LF in 9% and 74% of the low and high-risk groups, respectively. CONCLUSIONS: A combination of clinical and radiomic features predicted freedom from LF better than any clinical feature set alone. Patients at high risk for LF may benefit from stricter follow-up routines or intensified therapy.

20.
Biomimetics (Basel) ; 9(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786502

ABSTRACT

One of the significant challenges in scaling agile software development is organizing software development teams to ensure effective communication among members while equipping them with the capabilities to deliver business value independently. A formal approach to address this challenge involves modeling it as an optimization problem: given a professional staff, how can they be organized to optimize the number of communication channels, considering both intra-team and inter-team channels? In this article, we propose applying a set of bio-inspired algorithms to solve this problem. We introduce an enhancement that incorporates ensemble learning into the resolution process to achieve nearly optimal results. Ensemble learning integrates multiple machine-learning strategies with diverse characteristics to boost optimizer performance. Furthermore, the studied metaheuristics offer an excellent opportunity to explore their linear convergence, contingent on the exploration and exploitation phases. The results produce more precise definitions for team sizes, aligning with industry standards. Our approach demonstrates superior performance compared to the traditional versions of these algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL