Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Proc Natl Acad Sci U S A ; 121(21): e2401738121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38743623

Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.


Escherichia coli , Iron , Manganese , Manganese/metabolism , Iron/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Hydrogen Peroxide/metabolism , Saccharomyces cerevisiae/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Zinc/metabolism , Lactococcus lactis/enzymology , Lactococcus lactis/metabolism , Oxidation-Reduction , Metals/metabolism
2.
J Phys Chem A ; 124(37): 7518-7525, 2020 Sep 17.
Article En | MEDLINE | ID: mdl-32804506

Eighty three stationary points of MgC6H2 isomers spanning from 0 to 215 kcal mol-1 have been theoretically identified using density functional theory at the B3LYP/6-311++G(2d,2p) level of theory. Among them, four low-lying isomers lying within 23.06 kcal mol-1 (1 eV) have been further characterized in detail using high-level coupled-cluster (CC) methods. The thermodynamically most stable isomer turns out to be 1-magnesacyclohepta-4-en-2,6-diyne (1). The other three isomers, 3-magnesahepta-1,4,6-triyne (2), 1-magnesacyclohepta-2,3,4-trien-6-yne (3), and 1-magnesahepta-2,4,6-triyne (4) lie 8.24, 19.76, and 21.36 kcal mol-1, respectively, above 1 at the ae-CCSD(T)/cc-pCVTZ level of theory. All the four isomers are polar with a permanent electric dipole moment (µ ≠ 0). Hence, they are potential candidates for rotational spectroscopic studies. Considering the recent identification of magnesium-bearing hydrocarbons such as, MgC2H and MgC4H in IRC+10216, it is believed that the current theoretical data may be of relevance to laboratory molecular spectroscopic and radioastronomical studies on MgC6H2 isomers. The energetic and spectroscopic information gathered in this study would aid the detection of low-lying MgC6H2 isomers in the laboratory, which are indispensable for radioastronomical studies. It is also noted here that neither the National Institute of Standards and Technology Chemistry WebBook nor the Kinetic Database for Astrochemistry lists any isomer of MgC6H2 at the moment. Therefore, these isomers are studied here theoretically for the very first time.

3.
Free Radic Biol Med ; 140: 4-13, 2019 08 20.
Article En | MEDLINE | ID: mdl-30735836

Biochemical mechanisms emerged and were integrated into the metabolic plan of cellular life long before molecular oxygen accumulated in the biosphere. When oxygen levels finaly rose, they threatened specific types of enzymes: those that use organic radicals as catalysts, and those that depend upon iron centers. Nature has found ways to ensure that such enzymes are still used by contemporary organisms. In some cases they are restricted to microbes that reside in anoxic habitats, but in others they manage to function inside aerobic cells. In the latter case, it is frequently true that the ancestral enzyme has been modified to fend off poisoning. In this review we survey a range of protein adaptations that permit radical-based and low-potential iron chemistry to succeed in oxic environments. In many cases, accessory domains shield the vulnerable radical or metal center from oxygen. In others, the structures of iron cofactors evolved to less oxidizable forms, or alternative metals replaced iron altogether. The overarching view is that some classes of biochemical mechanism are intrinsically incompatible with the presence of oxygen. The structural modification of target enzymes is an under-recognized response to this problem.


Adaptation, Physiological , Free Radicals/metabolism , Oxidative Stress , Oxygen/metabolism , Catalysis , Iron/metabolism , Oxidation-Reduction
4.
Proc Natl Acad Sci U S A ; 115(14): E3266-E3275, 2018 04 03.
Article En | MEDLINE | ID: mdl-29559534

It has been unclear whether superoxide and/or hydrogen peroxide play important roles in the phenomenon of obligate anaerobiosis. This question was explored using Bacteroides thetaiotaomicron, a major fermentative bacterium in the human gastrointestinal tract. Aeration inactivated two enzyme families-[4Fe-4S] dehydratases and nonredox mononuclear iron enzymes-whose homologs, in contrast, remain active in aerobic Escherichia coli Inactivation-rate measurements of one such enzyme, B. thetaiotaomicron fumarase, showed that it is no more intrinsically sensitive to oxidants than is an E. coli fumarase. Indeed, when the E. coli enzymes were expressed in B. thetaiotaomicron, they no longer could tolerate aeration; conversely, the B. thetaiotaomicron enzymes maintained full activity when expressed in aerobic E. coli Thus, the aerobic inactivation of the B. thetaiotaomicron enzymes is a feature of their intracellular environment rather than of the enzymes themselves. B. thetaiotaomicron possesses superoxide dismutase and peroxidases, and it can repair damaged enzymes. However, measurements confirmed that the rate of reactive oxygen species production inside aerated B. thetaiotaomicron is far higher than in E. coli Analysis of the damaged enzymes recovered from aerated B. thetaiotaomicron suggested that they had been inactivated by superoxide rather than by hydrogen peroxide. Accordingly, overproduction of superoxide dismutase substantially protected the enzymes from aeration. We conclude that when this anaerobe encounters oxygen, its internal superoxide levels rise high enough to inactivate key catabolic and biosynthetic enzymes. Superoxide thus comprises a major element of the oxygen sensitivity of this anaerobe. The extent to which molecular oxygen exerts additional direct effects remains to be determined.


Bacterial Proteins/metabolism , Bacteroides thetaiotaomicron/metabolism , Escherichia coli/metabolism , Oxygen/metabolism , Superoxides/metabolism , Anaerobiosis , Bacterial Proteins/genetics , Bacteroides thetaiotaomicron/genetics , Escherichia coli/genetics , Oxidative Stress
5.
ACS Chem Biol ; 11(5): 1438-44, 2016 05 20.
Article En | MEDLINE | ID: mdl-26963368

PerR is the peroxide resistance regulator found in several pathogenic bacteria and governs their resistance to peroxide stress by inducing enzymes that destroy peroxides. However, it has recently been implicated as a key component of the aerotolerance in several facultative or strict anaerobes, including the highly pathogenic Staphylococcus aureus. By combining (18)O labeling studies to ESI- and MALDI-TOF MS detection and EMSA experiments, we demonstrate that the active form of PerR reacts with dioxygen, which leads ultimately to disruption of the PerR/DNA complex and is thus physiologically meaningful. Moreover, we show that the presence of O2 assists PerR sensing of H2O2, another feature likely to be important for anaerobic organisms. These results allow one to envisage different scenarios for the response of anaerobes to air exposure.


Bacillus subtilis/metabolism , Bacteria, Anaerobic/metabolism , Bacterial Proteins/metabolism , Hydrogen Peroxide/metabolism , Oxygen/metabolism , Repressor Proteins/metabolism , DNA, Bacterial/metabolism , Oxidation-Reduction , Staphylococcus aureus/metabolism
6.
ACS Chem Biol ; 10(3): 682-6, 2015 Mar 20.
Article En | MEDLINE | ID: mdl-25486128

Fur family proteins, ubiquitous in prokaryotes, play a pivotal role in microbial survival and virulence in most pathogens. Metalloregulators, such as Fur and PerR, regulate the transcription of genes connected to iron homeostasis and response to oxidative stress, respectively. In Bacillus subtilis, Fur and PerR bind with high affinity to DNA sequences differing at only two nucleotides. In addition to these differences in the PerR and Fur boxes, we identify in this study a residue located on the DNA binding motif of the Fur protein that is critical to discrimination between the two close DNA sequences. Interestingly, when this residue is introduced into PerR, it lowers the affinity of PerR for its own DNA target but confers to the protein the ability to interact strongly with the Fur DNA binding sequence. The present data show how two closely related proteins have distinct biological properties just by changing a single residue.


Bacillus subtilis/genetics , Bacterial Proteins/genetics , DNA, Bacterial/chemistry , Gene Expression Regulation, Bacterial , Mutation , Repressor Proteins/genetics , Arginine/metabolism , Asparagine/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Base Sequence , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Molecular Sequence Data , Protein Binding , Protein Interaction Domains and Motifs , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcription, Genetic
...