Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
STAR Protoc ; 5(3): 103159, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941182

ABSTRACT

Glioma cells switch between energetic pathways to adapt and resist therapies. We present a protocol for measuring mitochondrial and glycolytic ATP rates in patient-derived glioma stem-like cells using a Seahorse XF ATP rate assay. We describe steps for growing 3D glioma stem-like cells, attaching cells to the assay plate, preparing drugs, and running the ATP rate assay. We also detail procedures for imaging viable cell numbers and normalization, with tips to overcome pitfalls in Agilent Seahorse assays.

2.
Indian J Med Microbiol ; : 100659, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945273

ABSTRACT

PURPOSE: Genomic surveillance of positive SARS-CoV-2 samples is important to monitor the genetic changes occurring in virus, this was enhanced after the WHO designation of XBB.1.16 as a variant under monitoring in March 2023. From 5th February till 6th May 2023 all positive SARS-CoV-2 samples were monitored for genetic changes. METHODS: A total of 1757 samples having Ct value <25 (for E and ORF gene) from different districts of Rajasthan were processed for Next Generation Sequencing (NGS). The FASTA files obtained on sequencing were used for lineage determination using Nextclade and phylogenetic tree construction. RESULTS AND CONCLUSIONS: Sequencing and lineage identification was done in 1624 samples. XBB.1.16 was the predominant lineage in 1413(87.0%) cases while rest was other XBB (207, 12.74%) and other lineages (4, 0.2%). Of the 1413 XBB.1.16 cases, 57.47% were males and 42.53% were females. Majority (66.53%) belonged to 19-59 year age. 84.15% of XBB.1.16 cases were infected for the first time. Hospitalization was required in only 2.2% cases and death was reported in 5 (0.35%) patients. Most of the cases were symptomatic and the commonest symptoms were fever, cough and rhinorrhoea. Co-morbidities were present in 414 (29.3%) cases. Enhanced genomic surveillance helped to rapidly identify the spread of XBB variant in Rajasthan. This in turn helped to take control measures to prevent spread of virus and estimate public health risks of the new variant relative to the previously circulating lineages. XBB variant was found to spread rapidly but produced milder disease.

3.
Sci Rep ; 14(1): 10419, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710746

ABSTRACT

The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Indoles , Molecular Docking Simulation , Protease Inhibitors , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , HEK293 Cells , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Computer Simulation , COVID-19/virology , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis
4.
Sci Rep ; 14(1): 8610, 2024 04 14.
Article in English | MEDLINE | ID: mdl-38616195

ABSTRACT

There are fewer studies on Trichoderma diversity in agricultural fields. The rhizosphere of 16 crops was analyzed for Trichoderma species in 7 districts of Rajasthan state of India. Based on DNA sequence of translation elongation factor 1α (tef-1α), and morphological characteristics, 60 isolates were identified as 11 species: Trichoderma brevicompactum, species in Harzianum clade identified as T. afroharzianum, T. inhamatum, T. lentiforme, T. camerunense, T. asperellum, T. asperelloides, T. erinaceum, T. atroviride, T. ghanense, and T. longibrachiatum. T. brevicompactum is the most commonly occurring strain followed by T. afroharzianum. No new species were described in this study. T. lentiforme, showed its first occurrence outside the South American continent. The morphological and cultural characteristics of the major species were observed, described, and illustrated in detail. The isolates were tested for their antagonistic effect against three soilborne plant pathogens fungi: Sclerotium rolfsii, Rhizoctonia solani, and Fusarium verticillioides in plate culture assays. One of the most potent strains was T. afroharzianum BThr29 having a maximum in vitro inhibition of S. rolfsii (76.6%), R. solani (84.8%), and F. verticillioides (85.7%). The potential strain T. afroharzianum BThr29 was also found to be efficient antagonists against soil borne pathogens in in vivo experiment. Such information on crop selectivity, antagonistic properties, and geographic distribution of Trichoderma species will be beneficial for developing efficient Trichoderma-based biocontrol agents.


Subject(s)
Rhizosphere , Trichoderma , India , Trichoderma/genetics , Crops, Agricultural , Genetic Variation
5.
Molecules ; 29(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543042

ABSTRACT

SARS-CoV, an RNA virus, is contagious and displays a remarkable degree of adaptability, resulting in intricate disease presentations marked by frequent genetic mutations that can ultimately give rise to drug resistance. Targeting its viral replication cycle could be a potential therapeutic option to counter its viral growth in the human body leading to the severe infectious stage. The Mpro of SARS-CoV-2 is a promising target for therapeutic development as it is crucial for viral transcription and replication. The derivatives of ß-diketone and coumarin have already been reported for their antiviral potential and, thus, are considered as a potential scaffold in the current study for the computational design of potential analogs for targeting the viral replication of SARS-CoV-2. In our study, we used novel diketone-hinged coumarin derivatives against the SARS-CoV-2 MPro to develop a broad-spectrum antiviral agent targeting SARS-CoV-2. Through an analysis of pharmacokinetics and docking studies, we identified a list of the top 10 compounds that demonstrated effectiveness in inhibiting the SARS-CoV-2 MPro virus. On the basis of the pharmacokinetics and docking analyses, the top 5 novel coumarin analogs were synthesized and characterized. The thermodynamic stability of compounds KS82 and KS94 was confirmed by their molecular dynamics, and the stability of the simulated system indicated their inhibitory nature. Molecules KS82 and KS94 were further evaluated for their anti-viral potential using Vero E6 cells followed by RT-PCR assay against SARS-CoV-2. The test compound KS82 was the most active with the potential to inhibit SARS-CoV-2 replication in Vero E6 cells. These data indicate that KS82 prevents the attack of the virus and emerges as the primary candidate with promising antiviral properties.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Coumarins/pharmacology , Biological Assay , Ketones , Antiviral Agents/pharmacology , Molecular Docking Simulation , Protease Inhibitors , Molecular Dynamics Simulation
6.
BMC Infect Dis ; 24(1): 178, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336640

ABSTRACT

BACKGROUND: Lipoarabinomannan (LAM) antigen serves as an attractive biomarker to diagnose Tuberculosis (TB). Given the limitations of current diagnostic modalities for Pleural TB, current study evaluated LAM's potential to serve as a point-of-care test to diagnose pleural TB. METHODS: A cross sectional, diagnostic accuracy study was conducted during February to November 2021 in a tertiary care hospital in India. LAM antigen detection was performed on pleural fluid as well as early morning urine specimen of suspected pleural TB patients by "Alere/ Abott Determine TB LAM" lateral flow assay (LAM-LFA). The results were compared to microbiological reference standards/MRS (Mycobacterial culture or NAAT) and Composite reference standards/CRS (MRS plus Clinico-radiological diagnosis). RESULTS: A total of 170 subjects were included in the analysis, including 26 with Definite TB, 22 with Probable TB, and 122 with No TB. Compared to MRS and CRS, the sensitivity (61.54% & 45.83%) and positive predictive value (PPV) (57.14 & 78.57%) of Pleural LAM-LFA testing were found to be suboptimal, whereas the specificity (91.67% & 95.08%) and negative predictive value (NPV) (92.96% & 81.69%) of the assay were found to be good. Urinary LAM-LFA performed even worse than pleural LAM-LFA, except for its higher specificity against MRS and CRS (97.2% and 98.3%, respectively). Specificity and PPV of pleural LAM detection increased to 100% when analysed in a subgroup of patients with elevated ADA levels (receiver operating curve analysis-derived cut off value > 40 IU/ml). CONCLUSION: Detection of LAM antigen by LFA directly from pleural fluid was found to be a useful test to predict absence of the disease if the test is negative rather than using as a POCT for diagnosis.


Subject(s)
HIV Infections , Tuberculosis, Pleural , Humans , Tuberculosis, Pleural/diagnosis , Tuberculosis, Pleural/microbiology , Cross-Sectional Studies , Sensitivity and Specificity , Lipopolysaccharides/urine
7.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178552

ABSTRACT

The seed storage proteins of cereal and legumes are the primary source of amino acids which are required for sustaining the nitrogen and carbon demands during germination and growth. Humans derive most of their dietary proteins from storage proteins in form of a wide variety of foods, for consumption. The amino acid content of most of these proteins is biased and the need for this biasness is not understood. The high abundance of proline, glutamine, and cysteine in cereals makes the gluten fraction viscoelastic. The cereal proteins have less charge and legume proteins have more charge on them. Their non-polar amino acid distribution has large variations. These characteristics are strongly responsible for the partial and complete unfolding of several domains of the storage proteins. Many of the storage proteins share a highly conserved structural feature within the cupin superfamily spread across all kingdoms of life. The intrinsically disordered viscoelastic proteins help in making dough which is vital for the quality of bread. Unfolded regions harbor more immunogenic sequences and cause food-related allergies and intolerance. We have discussed these properties in terms of comparison of cereal and legume storage protein sequences and allergy. Our study supports the findings that large disordered regions contain allergen-representative peptides. Interestingly, a high number of allergen-representative peptides were cleavable by digestive enzymes. Furthermore, unfolded storage proteins mimic microbial immunogens to induce a memory immune response. Results findings can be used to guide the understanding of immunological characteristics of storage proteins and may assist in treatment decisions for food allergy.Communicated by Ramaswamy H. Sarma.

8.
Neurooncol Adv ; 6(1): vdad165, 2024.
Article in English | MEDLINE | ID: mdl-38213834

ABSTRACT

Background: The most prevalent cancer treatments cause cell death through DNA damage. However, DNA damage response (DDR) repair pathways, initiated by tumor cells, can withstand the effects of anticancer drugs, providing justification for combining DDR inhibitors with DNA-damaging anticancer treatments. Methods: Cell viability assays were performed with CellTiter-Glo assay. DNA damage was evaluated using Western blotting analysis. RNA-seq and single-cell level expression were used to identify the DDR signatures. In vivo, studies were conducted in mice to determine the effect of ATris on TMZ sensitization. Results: We found a subpopulation of glioma sphere-forming cells (GSCs) with substantial synergism with temozolomide (TMZ) using a panel of 3 clinical-grade ataxia-telangiectasia- and Rad3-related kinase inhibitors (ATRis), (elimusertib, berzosertib, and ceralasertib). Interestingly, most synergistic cell lines had O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, indicating that ATRi mainly benefits tumors with no MGMT repair. Further, TMZ activated the ATR-checkpoint kinase 1 (Chk1) axis in an MGMT-dependent way. TMZ caused ATR-dependent Chk1 phosphorylation and DNA double-strand breaks as shown by increased γH2AX. Increased DNA damage and decreased Chk1 phosphorylation were observed upon the addition of ATRis to TMZ in MGMT-methylated (MGMT-) GSCs. TMZ also improved sensitivity to ATRis in vivo, as shown by increased mouse survival with the TMZ and ATRi combination treatment. Conclusions: This research provides a rationale for selectively targeting MGMT-methylated cells using ATRis and TMZ combination. Overall, we believe that MGMT methylation status in GBM could serve as a robust biomarker for patient selection for ATRi combined with TMZ.

9.
Chem Phys Lipids ; 259: 105374, 2024 03.
Article in English | MEDLINE | ID: mdl-38176612

ABSTRACT

Soluble alpha-amylases play an important role in the catabolism of polysaccharides. In this work, we show that the malt α -amylase can interact with the lipid membrane and further alter its mechanical properties. Vesicle fluctuation spectroscopy is used for quantitative measurement of the membrane bending rigidity of phosphatidylcholines lipid vesicles from the shape fluctuation based on the whole contour of Giant Unilamellar Vesicles (GUVs). The bending rigidity of the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid vesicles in water increases significantly with the presence of 0.14 micromolar alpha-amylase (AA) in the exterior solution. It appears that the enzyme present in the external solution interacts with the outer layer of the bilayer membrane, leading to an asymmetry of the solution on either side of the bilayer membrane and altering its elasticity. At AA concentration of 1.5 micromolars and above, changes in the morphology of the GUV membrane are observed. The interaction between AA in the external solution and the external leaflet causes the bilayer membrane to curve spontaneously, leading to the formation of outbuds, giving a positive spontaneous curvature of C0 ≤ 0.05 µm-1 at ≈ 1 mg / ml of the AA concentration. We validate and characterize its concentration-dependent role in stabilizing the membrane curvature. Our findings indicate that the involvement of the enzyme, depending on the concentration, can have a considerable effect on the mechanical characteristics of the membrane.


Subject(s)
Lipid Bilayers , alpha-Amylases , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Unilamellar Liposomes/chemistry
10.
J Proteomics ; 293: 105059, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38151158

ABSTRACT

Urinary small extracellular vesicles or exosomes (uEVs) source could be an emerging trove of biomarkers in coronary artery disease (CAD). It is a chronic inflammatory disease having a long asymptomatic phase of fatty-fibrous development in arteries leading to angina, myocardial infarction, and death. Our study was aimed at identifying differential protein expression profiling of uEVs in CAD. We collected urine samples of CAD patients (n = 41) age 18-65 years and gender matched healthy controls (n = 41). We isolated uEVs using differential ultracentrifugation. Further, uEV samples were characterized by western blotting exosome markers (Flotillin, TSG, CD63, and CD9), nano tracking analysis, and transmission and scanning electron microscopy. A total of 508 proteins were identified by iTRAQ-based mass spectrometry. We observed protein expression levels of AZGP1, SEMG1/2, ORM1, IGL, SERPINA5, HSPG2, prosaposin, gelsolin, and CD59 were upregulated, and UMOD, KNG1, AMBP, prothrombin, and TF were downregulated. Protein-protein interactions, gene ontology and pathway analysis were performed to functionally annotate identified uEVs proteins. A novel uEVs differential protein signature is shown. On validating UMOD protein by ELISA in two clinically different CAD, stable-CAD patients had lower levels than healthy controls whereas recent myocardial infarction patients had lowest. Our findings suggest UMOD importance as early diagnostic biomarker. SIGNIFICANCE: Coronary artery disease is a chronic inflammatory disease caused by gradual deposition of cholesterol and fat along with other proteins to develop plaque inside arteries. This further leads to blockage of artery, heart attack and death. There are no identifiable early biomarkers to diagnose this. For the first time, we have identified the differentially expressed proteins isolated from non-invasive uEV of CAD patients compared to healthy controls by using MS Orbitrap and iTRAQ labelling of peptides. We have identified decreased levels of UMOD protein in CAD. These findings have been confirmed by ELISA. Furthermore, the levels of UMOD were observed as more highly decreased in recent myocardial infarction CAD patients, indicating the importance of this protein as an early diagnostic biomarker. Conclusively, our study represents a non-invasive urinary EVs trove of differentially expressed proteins in CAD. This will form a groundwork for understanding the pathophysiology of CAD and will help in future translational research utilizing uEVs.


Subject(s)
Coronary Artery Disease , Exosomes , Extracellular Vesicles , Myocardial Infarction , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Exosomes/metabolism , Proteomics , Coronary Artery Disease/diagnosis , Coronary Artery Disease/metabolism , Extracellular Vesicles/metabolism , Biomarkers/metabolism , Myocardial Infarction/diagnosis , Myocardial Infarction/metabolism
11.
Biomedicines ; 11(10)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37893156

ABSTRACT

Alzheimer's disease (AD) is caused by plaque agglomeration and entanglement in several areas of the neural cells, which leads to apoptosis. The main etiology of AD is senile dementia, which is linked to amyloid-beta (Aß) deregulation and tau perivascular pathogeny. Hyperphosphorylated tau has a propensity for microtubules, which elevate the instability and tau-protein congregates, leading to accumulation of neurofibrillary tangles (NFTs). Tau hyperphosphorylation is susceptible to GSK-3, which has led to an emerging hypothesis regarding the pathogenesis of AD. Accordingly, attempts have been made to conduct investigations and achieve further advancements on new analogues capable of inhibiting the GSK-3 protein, which are currently in the clinical trials. In this analysis, we have evaluated certain GSK-3 inhibitor variants utilising scaffolding and framework devised techniques with pharmacological characteristics, accompanied by computational screenings (pharmacokinetics and docking). The structure-based designed analogues interacted effectively with the active amino acids of GSK-3ß target protein. The in silico pharmacokinetic studies revealed their drug-like properties. The analogues with best interactions and binding scores will be considered in the future to completely demonstrate their potential relevance as viable GSK-3 inhibitors.

12.
Microsc Microanal ; 29(3): 1168-1177, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37749667

ABSTRACT

Small extracellular vesicles (sEVs) or exosomes are secretory vesicles largely involved in cell-cell communications and found to play a role in development as well as diseases including atherosclerosis. They hold a huge potential for translational research by devising better clinical diagnostics, biomarker discovery, drug delivery, and therapeutic strategies. Variations terms of morphology and distribution are crucial to biological function integrity. Moreover, it is dependent on susceptibility to influential factors of the environment like cell stress, inflammation, and secretion by different cells in subsequent biofluids. We have observed the morphological variations in sEVs or exosomes freshly isolated from patients with atherosclerotic cardiovascular disease (AsCVD), in blood plasma, saliva, and urine biofluids compared to healthy controls. High-resolution images were obtained by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) for the characterization of sEVs morphology. Western blotting and immuno-TEM gold labeling confirmed the presence of exosome markers. For the first time, we report size and shape variations, which suggest the existence of different functions of sEVs in the disease state. Morphological variations in sEVs were observed significantly in noninvasive AsCVD saliva and urine samples, important to understand the cell behavior and physiological state. These variations will be useful to investigate their possible role in the disease process.


Subject(s)
Cardiovascular Diseases , Exosomes , Extracellular Vesicles , Humans , Exosomes/chemistry , Microscopy, Electron, Transmission , Saliva
13.
Molecules ; 28(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37764355

ABSTRACT

No drug on the market, as a single entity, participates in different pathways involved in the pathology of Alzheimer's disease. The current study is aimed at the exploration of multifunctional chalcone derivatives which can act on multiple targets involved in Alzheimer's disease. A series of novel aminoethyl-substituted chalcones have been developed using in silico approaches (scaffold morphing, molecular docking, and ADME) and reported synthetic methods. The synthesized analogs were characterized and evaluated biologically using different in vitro assays against AChE, AGEs, and radical formation. Among all compounds, compound PS-10 was found to have potent AChE inhibitory activity (IC50 = 15.3 nM), even more than the standard drug (IC50 = 15.68 nM). Further, the in vivo evaluation of PS-10 against STZ-induced dementia in rats showed memory improvement (Morris Water Maze test) in rats. Also, PS-10 inhibited STZ-induced brain AChE activity and oxidative stress, further strengthening the observed in vitro effects. Further, the molecular dynamic simulation studies displayed the stability of the PS-10 and AChE complex. The novel aminoethyl-substituted chalcones might be considered potential multifunctional anti-Alzheimer's molecules.


Subject(s)
Alzheimer Disease , Chalcone , Chalcones , Animals , Rats , Chalcones/pharmacology , Chalcones/therapeutic use , Alzheimer Disease/drug therapy , Molecular Docking Simulation , Molecular Dynamics Simulation , Pain
14.
Molecules ; 28(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37630283

ABSTRACT

Alzheimer's disease (AD) is the prime cause of 65-80% of dementia cases and is caused by plaque and tangle deposition in the brain neurons leading to brain cell degeneration. ß-secretase (BACE-1) is a key enzyme responsible for depositing extracellular plaques made of ß-amyloid protein. Therefore, efforts are being applied to develop novel BACE-1 enzyme inhibitors to halt plaque build-up. In our study, we analyzed some Elenbecestat analogues (a BACE-1 inhibitor currently in clinical trials) using a structure-based drug design and scaffold morphing approach to achieve a superior therapeutic profile, followed by in silico studies, including molecular docking and pharmacokinetics methodologies. Among all the designed compounds, SB306 and SB12 showed good interactions with the catalytic dyad motifs (Asp228 and Asp32) of the BACE-1 enzyme with drug-likeliness properties and a high degree of thermodynamic stability confirmed by the molecular dynamic and stability of the simulated system indicating the inhibitory nature of the SB306 and SB12 on BACE 1.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Humans , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Plaque, Amyloid
15.
Chem Biol Drug Des ; 102(5): 1155-1175, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37599098

ABSTRACT

The series of N-methylpiperazinyl and piperdinylalkyl-O-chalcone derivatives as potential polyfuctional agents against Alzheimer's disease that have been designed, synthesized and then evaluated biologically using in vitro assays for the inhibition of acetylcholinesterase (AChE) activity, AGEs, and free radical formation. The majority of synthesized compounds inhibited AChE & AGEs with additional free radical scavenging activities at nanomolar concentrations. Among these, compound 5k was found to have potent AChE inhibitory activity (IC50 = 11.6 nM), superior than the reference compound donepezil (15.68 nM) along with the good anti-AGEs and free radical formation effect. Its potency was justified by docking studies that revealed its dual binding characteristic with both catalytic active site and peripheral anionic site of AChE, simultaneously. Furthermore, the in vivo evaluation of 5k against streptozotocin (STZ)-induced dementia in rats also showed improvement of memory functions (Morris water maze test) in animals. Also, 5k inhibited STZ-inudced brain AChE activity and oxidative stress which further strengthen the observed in vitro effects. The stability of the ligand-protein complex was then analyzed using a simulation-based interaction protocol. The results revealed that these N-methylpiperazinyl and piperdinylalkyl-O-chalcone derivatives could be considered for potential polyfunctional anti-Alzheimer's molecules.

16.
Indian J Med Microbiol ; 45: 100398, 2023.
Article in English | MEDLINE | ID: mdl-37573049

ABSTRACT

During October 2020, suddenly many cases were reported with Dengue like Illness in Sahawa village, Rajasthan. Blood samples collected from 68 patients were tested for Dengue NS1 antigen and IgM antibodies for Dengue, Chikungunya, Scrub typhus, Leptospira and Brucella by ELISA, Dengue, Chikungunya and Zika viral RNA by multiplex Polymerase Chain Reaction (PCR), 41.17% samples were positive for Dengue; 25% were positive by Dengue PCR, 17.64% for NS1 Ag,14.70% for IgM ELISA, 20.58% were positive for antibodies either for Scrub typhus (4.41%), Leptospira (7.35%) or Brucella (10.29%). Dengue was seen in 41.17% cases and other etiological agents in 20.58% cases.


Subject(s)
Chikungunya Fever , Dengue , Scrub Typhus , Zika Virus Infection , Zika Virus , Humans , Dengue/epidemiology , Dengue/complications , Chikungunya Fever/epidemiology , Scrub Typhus/epidemiology , India/epidemiology , Enzyme-Linked Immunosorbent Assay , Fever/etiology , Disease Outbreaks , Immunoglobulin M , Zika Virus Infection/complications , Zika Virus Infection/epidemiology , Antibodies, Viral
17.
Tuberculosis (Edinb) ; 142: 102369, 2023 09.
Article in English | MEDLINE | ID: mdl-37536090

ABSTRACT

Pleural tuberculosis (pTB) is a grave clinical challenge. A novel cell-free M. tuberculosis DNA (cfM.tb-DNA) probe-based-qPCR assay was developed for the diagnosis of pTB. Total cell-free DNA was extracted from pleural fluid (PF) and paired plasma samples and cfM.tb-DNA was quantified by probe-based qPCR targeting devR (109-bp) gene of M. tuberculosis in patients with pleural effusion. Patient categorization was done using 'Composite-Reference-Standard' formulated for the study. Assay cut-offs were determined from samples in the 'Development set' (n = 17; 'Definite & Probable' pTB; n = 9 and 'Non-TB'; n = 8) by ROC-curve analysis and applied to 'Validation set' (n = 112; 'Definite' pTB; n = 8, 'Probable' pTB; n = 34, 'Possible' pTB; n = 28 and 'Non-TB'; n = 42). cfM.tb-DNA qPCR had a sensitivity of 62.5% (95%CI; 24.4,91.4) in 'Definite' pTB category and 59.5% (95%CI; 43.2,74.3) in 'Definite & Probable' pTB category with 95.2% (95%CI; 83.8,99.4) specificity using PF. In plasma (n = 85), the assay had a sub-optimal sensitivity of 7.6% (95%CI; 0.95,25.1) with 88.2% (95%CI; 72.5,96.7) specificity in 'Definite & Probable' pTB group. Xpert MTB/RIF assay detected only six-samples in the 'Validation set'. Logistic regression analysis indicated that PF-cfM.tb-DNA qPCR provided incremental advantage over existing pTB diagnostic algorithms. To the best of our knowledge, this is the first report describing the utility of cfM.tb-DNA for pTB diagnosis in India.


Subject(s)
Cell-Free Nucleic Acids , Mycobacterium tuberculosis , Tuberculosis, Pleural , Humans , Mycobacterium tuberculosis/genetics , Tuberculosis, Pleural/diagnosis , Tuberculosis, Pleural/microbiology , Cell-Free Nucleic Acids/genetics , Sensitivity and Specificity , ROC Curve
18.
J Indian Soc Periodontol ; 27(3): 308-314, 2023.
Article in English | MEDLINE | ID: mdl-37346849

ABSTRACT

Background: Green tea (Camellia sinensis) mouth rinse is found effective in reducing periodontitis. However, studies evaluating the effectiveness of green tea extracts in reducing oral halitosis and tongue coating on Indian population were scanty. Objective: The objective of this study was to evaluate the effectiveness of green tea-based mouth rinse in comparison with 0.2% chlorhexidine gluconate mouth rinse in reducing dental plaque, tongue coating, and halitosis among human volunteers. Materials and Methods: This was a parallel-arm double-blind randomized controlled trial conducted in two residential hostels in Mysuru city over 21 days. 90 adult participants were recruited and randomized into three groups: Group A: mouth rinse containing saline, Group B: 5% C. sinensis mouth rinse, and Group C: 0.2% chlorhexidine diluted to with equal quantity of water. Preintervention prophylaxis was done; tongue coating and oral halitosis scores were recorded and compared between the groups at baseline and after 21 days. Results: The mean plaque buildup at postintervention was highest in Group 1 (2.45 ± 0.38) followed by Group 3 (1.18 ± 0.12) and Group 2 (1.08 ± 0.11) in the descending order. The mean oral halitosis score was highest in Group 1 (3.00 ± 0.79) followed by Group 3 (1.53 ± 0.50) and Group 2 (1.50 ± 0.50) in the descending order. The mean tongue coating score was highest in Group 1 (1.17 ± 0.47) followed by Group 2 (0.75 ± 0.36) and Group 3 (0.69 ± 0.34) in the descending order. Conclusion: Five percent C. sinensis mouth rinse is as effective as commercially available 0.2% chlorhexidine mouthwash in reducing plaque deposition, tongue coating, and oral halitosis.

19.
J Educ Health Promot ; 12: 106, 2023.
Article in English | MEDLINE | ID: mdl-37288412

ABSTRACT

BACKGROUND: India lacks organized school oral health programs, resulting in limited access to oral health care among children. The peer role models, or teachers, may help in bridging the gap to enhance knowledge on self-care preventive practices. The aim of the study was to evaluate and compare the effectiveness of dental health education (DHE) offered by qualified dental professional, trained teachers, and peer role models in promoting oral hygiene status and behavior among school-going children in Mysuru, Karnataka. MATERIALS AND METHODS: This was an interventional study conducted over a period of 3 months in an academic year in three selected schools in Mysuru City, India. A total of 120 students were divided into three groups - group 1 were given DHE (dental health education) by a dental professional, group 2 were given DHE by a trained teacher, and group 3 were given DHE by peer role models. Oral health knowledge was assessed using a close-ended questionnaire, plaque levels were assessed using Turesky Gilmore Glickman modification of Quigley Hein plaque index, and gingival status was assessed using Loe and Sillness gingival index. After 3 months, the same index and questionnaire were used post intervention. RESULTS: The mean scores for knowledge on dental caries at baseline in groups 1, 2, and 3 were 3.75 ± 1.25, 3.65 ± 1.07, and 3.40 ± 1.17, respectively, with no significant difference between the groups, which changed to 4.43 ± 1.27, 3.37 ± 1.14, and 4.93 ± 0.99, respectively, following intervention. Similar results were observed with regard to knowledge on gingival and periodontal diseases. The mean plaque scores at baseline for groups 1, 2, and 3 were 4.17 ± 0.30, 3.24 ± 0.70, and 4.10 ± 0.31, respectively, which changed to 3.85 ± 0.32, 3.90 ± 0.39, and 3.69 ± 0.34, respectively, in three groups following intervention. Post intervention, plaque scores and gingival scores significantly improved in groups 1 and 3 but worsened in group 2. Overall, knowledge scores improved in groups 1 and 3 for some questions, but improvement was not noted in some questions. CONCLUSION: Under the limitations of the study, it was found that peer role models were as effective as dental professionals in providing DHE in schools.

20.
Indian J Med Microbiol ; 44: 100371, 2023.
Article in English | MEDLINE | ID: mdl-37356835

ABSTRACT

PURPOSE: Infection due to SARS-CoV-2 shows wide spectrum of disease from asymptomatic to severe disease and death. Coinfection of SARS-CoV-2 with other respiratory pathogens may affect the severity of disease and its outcome. Identification of other respiratory pathogens may help to initiate proper management and avoid unnecessary complications. MATERIALS AND METHODS: Total 250 SARS-COV-2 positive patients admitted in S.M.S hospitalwere included in study. Throat and nasopharyngeal swabs samples were collected in Viral Transport Medium (VTM) and nucleic acid extraction was done by automated EasyMag extractor and tested for 20 respiratory viruses and two bacteria by real time PCR. RESULTS: Out of 250 SARS CoV2 positive samples, 176 (70%) were positive for other respiratory pathogens also. The highest co-infection was due to HCoVOC43 (32.8%) virus followed by bacterial co-infection with S. pneumoniae (14.8%). Six (2.4%) patients with co-infection were on ventilator with age >65yr and three (1.2%) died during treatment. All three cases were found to have other co-morbid diseases like; asthma, Parkinson's and hypertension. CONCLUSION: High number of patients were found to have coinfection with other viruses and bacteria, timely identification and providing specific treatment to these patients can help improve outcome.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Viruses , Humans , SARS-CoV-2 , COVID-19/epidemiology , Coinfection/epidemiology , India/epidemiology , Streptococcus pneumoniae , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...