Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2403967, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106223

ABSTRACT

Platinum-Ruthenium (PtRu) bimetallic nanoparticles are promising catalysts for methanol oxidation reaction (MOR) required by direct methanol fuel cells. However, existing catalyst synthesis methods have difficulty controlling their composition and structures. Here, a direct Joule heating method to yield highly active and stable PtRu catalysts for MOR is shown. The optimized Joule heating condition at 1000 °C over 50 microseconds produces uniform PtRu nanoparticles (6.32 wt.% Pt and 2.97 wt% Ru) with an average size of 2.0 ± 0.5 nanometers supported on carbon black substrates. They have a large electrochemically active surface area (ECSA) of 239 m2 g-1 and a high ECSA normalized specific activity of 0.295 mA cm-2. They demonstrate a peak mass activity of 705.9 mA mgPt -1 for MOR, 2.8 times that of commercial 20 wt.% platinum/carbon catalysts, and much superior to PtRu catalysts obtained by standard hydrothermal synthesis. Theoretical calculation results indicate that the superior catalytic activity can be attributed to modified Pt sites in PtRu nanoparticles, enabling strong methanol adsorption and weak carbon monoxide binding. Further, the PtRu catalyst demonstrates excellent stability in two-electrode methanol fuel cell tests with 85.3% current density retention and minimum Pt surface oxidation after 24 h.

2.
ACS Appl Mater Interfaces ; 16(13): 16175-16185, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38509690

ABSTRACT

Zinc-ion batteries (ZIBs) are promising energy storage devices with safe, nonflammable electrolytes and abundant, low-cost electrode materials. Their practical applications are hampered by various water-related undesirable reactions, such as the hydrogen evolution reaction (HER), corrosion of zinc metal, and water-induced decay of cathode materials. Polymer hydrogel electrolytes were used to control these reactions. However, salt, water, and polymeric backbones intervene in polymer hydrogels, and currently, there are no systematic studies on how salt and water concentrations synergistically affect polymer hydrogels' electrochemical performance. Here, we used an in situ polymerization method to synthesize polyacrylamide (PAM) hydrogels with varied Zn(ClO4)2 (0.5 to 2.0 mol kg-1) and water (40 to 90 wt %) concentrations. Their electrochemical performances in Zn||Ti half-cells, Zn||Zn symmetrical cells, and Zn||V2O5 full cells have been comprehensively evaluated. Although the ionic conductivity of electrolytes increases with the salt concentration, a high salt concentration of 2.0 mol kg-1 with more Zn2+ solvated H2O would induce more severe HER and Zn corrosion at the electrolyte/electrode interfaces. A narrow window of the water concentration at 70-80 wt % is optimal to balance needs for achieving a high ionic conductivity and restricting water-related undesirable reactions. The chemically more active water counts roughly 64.1-73.1 wt % of the total water in electrolytes. PAM hydrogel electrolyte with 1.0 mol kg-1 Zn(ClO4)2 and 80 wt % water enables 1200 h of stable cycling in a Zn||Zn symmetric cell and 99.24% of Coulombic efficiency in a Zn||Ti half-cell. Due to the water-induced decay of V2O5, the electrolyte with 70 wt % water delivers the best performance in a Zn||V2O5 full cell, which can retain 73.7% of its initial capacity after 400 charge/discharge cycles. Our results show that achieving precise control of salt and water concentrations of hydrogel electrolytes in their optimal windows to reduce the fraction of chemically more active water while retaining high ionic conductivity is essential to enabling high-performance ZIBs.

3.
J Colloid Interface Sci ; 640: 983-989, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36913836

ABSTRACT

Under electrocatalytic conditions, the state of a catalyst surface (e.g., adsorbate coverage) can be very different from a pristine form due to the existing conversion equilibrium between water and H- and O-containing adsorbates. Dismissing the analysis of the catalyst surface state under operating conditionsmay lead to misleading guidelines for experiments. Given that confirming the actual active site of the catalyst under operating conditions is indispensable to providing practical guidance for experiments, herein, we analyzed the relations between the Gibbs free energy and the potential of a new type of molecular metal-nitrogen-carbon (MNC) dual-atom catalysts (DACs) with a unique 5 N-coordination environment, by spin-polarized density functional theory (DFT) and surface Pourbaix diagram calculations. Analyzing the derived surface Pourbaix diagrams, we screened out three catalysts, N3-Ni-Ni-N2, N3-Co-Ni-N2, and N3-Ni-Co-N2, to further study the activity of nitrogen reduction reaction (NRR). The results display that N3-Co-Ni-N2 is a promising NRR catalyst with a relatively low ΔG of 0.49 eV and slow kinetics of the competing hydrogen evolution. This work proposes a new strategy to guide DAC experiments more precisely: the analysis of the surface occupancy state of the catalysts under electrochemical conditions should be performed before activity analysis.

SELECTION OF CITATIONS
SEARCH DETAIL