Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Clin Nutr ; 43(10): 2316-2324, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39226719

ABSTRACT

BACKGROUND & AIMS: Time-restricted eating (TRE) and low-carbohydrate diet (LCD) can improve multiple cardiometabolic parameters in patients with metabolic syndrome (MetS), but their effects on psychosocial health and satiety are unclear. In this study, we aimed to evaluate the effects of TRE, LCD, and their combination (TRE + LCD) on quality of life (QoL), sleep, mood, appetite, and metabolic hormones in patients with MetS. METHODS: This is a secondary analysis of a single-center, 3-month, open-label, randomized clinical trial investigating the effects of TRE, LCD, and TRE + LCD on weight and cardiometabolic parameters in individuals with MetS. This secondary analysis examined QoL, sleep, mood, and appetite using the Rand 36-Item Short Form (SF-36); Pittsburgh Sleep Quality Index (PSQI); Depression, Anxiety, and Stress Scale; and Eating Behavior Rating Scale, respectively, as well as measured levels of metabolic hormones including leptin, amylin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1 (GLP-1), pancreatic polypeptide (PP), and peptide YY. Between-group comparisons were conducted via one-way ANOVAs and post hoc LSD tests for normally distributed variables or Kruskal‒Wallis H tests and the Nemenyi test for abnormally distributed variables. P < 0.017 was considered significant in multiple comparisons following Bonferroni adjustment. RESULTS: A total of 162 participants (mean [SD] age, 41.2 [9.9] years; mean [SD] body mass index, 29.3 [3.4] kg/m2; 102 [63%] men) who started the intervention were analyzed. After 3 months, only the TRE group decreased GLP-1 levels (-0.9 [IQR, -1.9 to -0.3] pg/mL; P = 0.002), increased PP levels (8.9 [IQR, -7.6 to 71.8] pg/mL; P = 0.011), physical functioning in the SF-36 (5.2 [95% CI, 1.9 to 8.5]; P = 0.001), social functioning in the SF-36 (9.1 [95% CI, 2.5 to 15.6]; P = 0.005), role-physical in the SF-36 (24.1 [95% CI, 11.8 to 36.4]; P < 0.001), role-emotional in the SF-36 (22.4 [95% CI, 12.6 to 32.2]; P < 0.001), and sleep efficiency in the PSQI (0.29 [95% CI, 0.03 to 0.55]; P = 0.021). Compared with changes in LCD, TRE further increased general health in the SF-36 (9.7 [95% CI, 3.3 to 16.0]; P = 0.006). Relative to the changes of TRE + LCD, TRE significantly increased role-emotional in the SF-36 (19.9 [95% CI 4.9 to 34.8]; P = 0.006). Changes in sleep quality, mood status, appetite, and metabolic hormones did not differ among three groups. Greater weight loss was associated with decreased leptin levels (r = 0.538), decreased amylin levels (r = 0.294), reduced total appetite scores (r = 0.220), and improved general health (r = -0.253) (all P ≤ 0.01). CONCLUSIONS: TRE, LCD, and TRE + LCD all could improve psychosocial health and reduce appetite. Notably, TRE yielded greater benefits in QoL compared with LCD or TRE + LCD in individuals with MetS. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04475822.


Subject(s)
Appetite , Diet, Carbohydrate-Restricted , Glucagon-Like Peptide 1 , Metabolic Syndrome , Quality of Life , Humans , Metabolic Syndrome/diet therapy , Metabolic Syndrome/psychology , Metabolic Syndrome/blood , Male , Diet, Carbohydrate-Restricted/methods , Diet, Carbohydrate-Restricted/psychology , Female , Middle Aged , Appetite/physiology , Glucagon-Like Peptide 1/blood , Adult , Affect , Sleep/physiology , Feeding Behavior/psychology , Feeding Behavior/physiology
2.
Diabetes Metab Syndr Obes ; 17: 3535-3546, 2024.
Article in English | MEDLINE | ID: mdl-39328263

ABSTRACT

Introduction: The long-acting insulin analogue insulin degludec (IDeg) is increasingly recommended for type two diabetes (T2DM), yet clinical experience in China remains limited. This retrospective study aimed to delineate the initiation strategy for IDeg in Chinese hospitalized patients with T2DM. Methods: We retrospectively analyzed 217 Chinese hospitalized patients with T2DM who initiated IDeg from December 2018 to June 2020, calculating the initial dose and examining correlations between clinical characteristics and glucose profiles. Results: The initial IDeg doses ranged from 0.15 to 0.18 IU/kg·d, showing no association with clinical characteristics. During titration, mean blood glucose levels (MEAN) correlated positively with diabetes duration, age, and Glycosylated Hemoglobin (HbA1c), and negatively with body mass index (BMI), triglycerides (TG), and low-density lipoprotein (LDL). The coefficient of variation (CV) in glucose levels correlated positively with HbA1c and negatively with BMI and TG. The mean amplitude of glycemic excursions (MAGE) mirrored these trends, with additional negative correlations to estimated glomerular filtration rate (eGFR) and serum albumin (ALB). Notably, glycemic variability parameters did not correlate with the presence of diabetic ketoacidosis (DKA) at admission. Hypoglycemia was observed in 21 patients, with differences in MEAN and CV during titration being the only significant findings. Conclusion: The initial IDeg dosing was inadequate and not tailored to clinical features, and there were weak correlations between diabetes duration, age, BMI, eGFR, LDL, and ALB levels and glucose profile post-initiation.

3.
Lab Invest ; : 102145, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343009

ABSTRACT

The surge in demand for experimental monkeys has led to a rapid increase in their costs. Consequently, there is a growing need for a cost-effective model of Parkinson's disease (PD) that exhibits all core clinical and pathological phenotypes. Evolutionarily, tree shrews (Tupaia belangeri) are closer to primates in comparison to rodents and could be an ideal species for modeling PD. To develop a tree shrew PD model, we used the 1-methyl-4-phenylpyridinium (MPP+), a metabolite derived from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to induce lesions in dopaminergic neurons of the unilateral substantia nigra. The induced tree shrew model consistently exhibited and maintained all classic clinical manifestations of PD for a 5-month period. The symptoms included bradykinesia, rest tremor, postural instability, and about 50% individuals showed apomorphine-induced rotations, a classic phenotype of unilateral PD models. All these are closely resembled the ones observed in PD monkeys. Meanwhile, this model was also sensitive to L-dopa treatment with a dose dependent manner, which suggested that the motor deficits are dopamine dependent. Immunostaining showed a significant loss of dopaminergic neurons (approximately 95%) in the lesioned substantia nigra, which is a crucial PD pathological marker. Moreover, a control group of nigral saline injection did not show any motor deficits and pathological changes. Cytomorphological analysis revealed that the size of nigral dopaminergic neurons in tree shrews is much bigger than that of rodents and is close to that of macaques. The morphological similarity may be an important structural basis for the manifestation of the highly similar phenotypes between monkey and tree shrew PD models. Collectively, in this study we have successfully developed a PD model in a small animal species that faithfully recapitulated the classic clinical symptoms and key pathological indicators of PD monkeys, providing a novel and low-cost avenue for evaluation of PD treatments and underlying mechanisms.

4.
BMC Med ; 22(1): 362, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227921

ABSTRACT

BACKGROUND: Obesity and metabolic syndrome (MetS) have become urgent worldwide health problems, predisposing patients to unfavorable myocardial status and thyroid dysfunction. Low-carbohydrate diet (LCD) and time-restricted eating (TRE) have been confirmed to be effective methods for weight management and improving MetS, but their effects on the myocardium and thyroid are unclear. METHODS: We conducted a secondary analysis in a randomized clinical diet-induced weight-loss trial. Participants (N = 169) diagnosed with MetS were randomized to the LCD group, the 8 h TRE group, or the combination of the LCD and TRE group for 3 months. Myocardial enzymes and thyroid function were tested before and after the intervention. Pearson's or Spearman's correlation was assessed between functions of the myocardium and thyroid and cardiometabolic parameters at baseline. RESULTS: A total of 162 participants who began the trial were included in the intention-to-treat (ITT) analysis, and 57 participants who adhered to their assigned protocol were involved in the per-protocol (PP) analysis. Relative to baseline, lactate dehydrogenase, creatine kinase MB, hydroxybutyrate dehydrogenase, and free triiodothyronine (FT3) declined, and free thyroxine (FT4) increased after all 3 interventions (both analyses). Creatine kinase (CK) decreased only in the TRE (- 18 [44] U/L, P < 0.001) and combination (- 22 [64] U/L, P = 0.003) groups (PP analysis). Thyrotropin (- 0.24 [0.83] µIU/mL, P = 0.011) and T3 (- 0.10 ± 0.04 ng/mL, P = 0.011) decreased in the combination group (ITT analysis). T4 (0.82 ± 0.39 µg/dL, P = 0.046), thyroglobulin antibodies (TgAb, 2 [1] %, P = 0.021), and thyroid microsomal antibodies (TMAb, 2 [2] %, P < 0.001) increased, while the T3/T4 ratio (- 0.01 ± 0.01, P = 0.020) decreased only in the TRE group (PP analysis). However, no significant difference between groups was observed in either analysis. At baseline, CK was positively correlated with the visceral fat area. FT3 was positively associated with triglycerides and total cholesterol. FT4 was negatively related to insulin and C-peptide levels. TgAb and TMAb were negatively correlated with the waist-to-hip ratio. CONCLUSIONS: TRE with or without LCD confers remarkable metabolic benefits on myocardial status and thyroid function in subjects with MetS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04475822.


Subject(s)
Diet, Carbohydrate-Restricted , Metabolic Syndrome , Thyroid Gland , Humans , Metabolic Syndrome/diet therapy , Male , Female , Diet, Carbohydrate-Restricted/methods , Middle Aged , Adult , Myocardium/metabolism , Thyroid Function Tests , Aged
5.
Cell Biosci ; 14(1): 70, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835047

ABSTRACT

BACKGROUND: The adult intestinal epithelium is a complex, self-renewing tissue composed of specialized cell types with diverse functions. Intestinal stem cells (ISCs) located at the bottom of crypts, where they divide to either self-renew, or move to the transit amplifying zone to divide and differentiate into absorptive and secretory cells as they move along the crypt-villus axis. Enteroendocrine cells (EECs), one type of secretory cells, are the most abundant hormone-producing cells in mammals and involved in the control of energy homeostasis. However, regulation of EEC development and homeostasis is still unclear or controversial. We have previously shown that protein arginine methyltransferase (PRMT) 1, a histone methyltransferase and transcription co-activator, is important for adult intestinal epithelial homeostasis. RESULTS: To investigate how PRMT1 affects adult intestinal epithelial homeostasis, we performed RNA-Seq on small intestinal crypts of tamoxifen-induced intestinal epithelium-specific PRMT1 knockout and PRMT1fl/fl adult mice. We found that PRMT1fl/fl and PRMT1-deficient small intestinal crypts exhibited markedly different mRNA profiles. Surprisingly, GO terms and KEGG pathway analyses showed that the topmost significantly enriched pathways among the genes upregulated in PRMT1 knockout crypts were associated with EECs. In particular, genes encoding enteroendocrine-specific hormones and transcription factors were upregulated in PRMT1-deficient small intestine. Moreover, a marked increase in the number of EECs was found in the PRMT1 knockout small intestine. Concomitantly, Neurogenin 3-positive enteroendocrine progenitor cells was also increased in the small intestinal crypts of the knockout mice, accompanied by the upregulation of the expression levels of downstream targets of Neurogenin 3, including Neuod1, Pax4, Insm1, in PRMT1-deficient crypts. CONCLUSIONS: Our finding for the first time revealed that the epigenetic enzyme PRMT1 controls mouse enteroendocrine cell development, most likely via inhibition of Neurogenin 3-mediated commitment to EEC lineage. It further suggests a potential role of PRMT1 as a critical transcriptional cofactor in EECs specification and homeostasis to affect metabolism and metabolic diseases.

6.
J Transl Med ; 22(1): 448, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741137

ABSTRACT

PURPOSE: The duration of type 2 diabetes mellitus (T2DM) and blood glucose levels have a significant impact on the development of T2DM complications. However, currently known risk factors are not good predictors of the onset or progression of diabetic retinopathy (DR). Therefore, we aimed to investigate the differences in the serum lipid composition in patients with T2DM, without and with DR, and search for potential serological indicators associated with the development of DR. METHODS: A total of 622 patients with T2DM hospitalized in the Department of Endocrinology of the First Affiliated Hospital of Xi'an JiaoTong University were selected as the discovery set. One-to-one case-control matching was performed according to the traditional risk factors for DR (i.e., age, duration of diabetes, HbA1c level, and hypertension). All cases with comorbid chronic kidney disease were excluded to eliminate confounding factors. A total of 42 pairs were successfully matched. T2DM patients with DR (DR group) were the case group, and T2DM patients without DR (NDR group) served as control subjects. Ultra-performance liquid chromatography-mass spectrometry (LC-MS/MS) was used for untargeted lipidomics analysis on serum, and a partial least squares discriminant analysis (PLS-DA) model was established to screen differential lipid molecules based on variable importance in the projection (VIP) > 1. An additional 531 T2DM patients were selected as the validation set. Next, 1:1 propensity score matching (PSM) was performed for the traditional risk factors for DR, and a combined 95 pairings in the NDR and DR groups were successfully matched. The screened differential lipid molecules were validated by multiple reaction monitoring (MRM) quantification based on mass spectrometry. RESULTS: The discovery set showed no differences in traditional risk factors associated with the development of DR (i.e., age, disease duration, HbA1c, blood pressure, and glomerular filtration rate). In the DR group compared with the NDR group, the levels of three ceramides (Cer) and seven sphingomyelins (SM) were significantly lower, and one phosphatidylcholine (PC), two lysophosphatidylcholines (LPC), and two SMs were significantly higher. Furthermore, evaluation of these 15 differential lipid molecules in the validation sample set showed that three Cer and SM(d18:1/24:1) molecules were substantially lower in the DR group. After excluding other confounding factors (e.g., sex, BMI, lipid-lowering drug therapy, and lipid levels), multifactorial logistic regression analysis revealed that a lower abundance of two ceramides, i.e., Cer(d18:0/22:0) and Cer(d18:0/24:0), was an independent risk factor for the occurrence of DR in T2DM patients. CONCLUSION: Disturbances in lipid metabolism are closely associated with the occurrence of DR in patients with T2DM, especially in ceramides. Our study revealed for the first time that Cer(d18:0/22:0) and Cer(d18:0/24:0) might be potential serological markers for the diagnosis of DR occurrence in T2DM patients, providing new ideas for the early diagnosis of DR.


Subject(s)
Biomarkers , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Lipidomics , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Male , Diabetic Retinopathy/blood , Diabetic Retinopathy/diagnosis , Female , Middle Aged , Biomarkers/blood , Case-Control Studies , Lipids/blood , Aged , Discriminant Analysis , Risk Factors , Least-Squares Analysis
7.
Int J Biol Sci ; 20(6): 2187-2201, 2024.
Article in English | MEDLINE | ID: mdl-38617535

ABSTRACT

The intestine is critical for not only processing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell (IEC)-specific knockout (ΔIEC) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5ΔIEC reduces mTORC1 signaling. Surprisingly, adult Slc7a5ΔIEC intestinal crypts have increased cell proliferation but reduced mature Paneth cells. Goblet cells, the other major secretory cell type in the small intestine, are increased in the crypts but reduced in the villi. Analyses with scRNA-seq and electron microscopy have revealed dedifferentiation of Paneth cells in Slc7a5ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. Thus, SLC7A5 likely regulates secretory cell differentiation to affect stem cell niche and indirectly regulate cell proliferation.


Subject(s)
Amino Acid Transport Systems , Large Neutral Amino Acid-Transporter 1 , Animals , Mice , Cell Differentiation/genetics , Cell Proliferation/genetics , Large Neutral Amino Acid-Transporter 1/genetics , Mechanistic Target of Rapamycin Complex 1/genetics
8.
iScience ; 27(4): 109436, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38544572

ABSTRACT

Cerebrospinal fluid (CSF) samples are commonly collected via lumbar puncture (LP) in both clinical and research settings for measurement of biomarkers of Alzheimer's disease (AD). To determine the effects of LP on CSF AD biomarkers, we collected CSF samples at seven different time points after an LP in rhesus monkeys. We find that amyloid-beta (Aß) and Tau levels increased significantly on day 1, peaked on day 3, and returned to baseline on day 10 after LP. The NFL levels increased significantly on day 5, peaked on day 10, and returned to baseline after day 30. The increased AD biomarker levels were mainly due to CSF outflow and deep intrathecal invasion during LP. Therefore, if LPs are repeated within a short period of time, prior LP can affect Aß and Tau levels within 10 days and NFL levels within 30 days, which may lead to clinical misdiagnosis or incorrect scientific conclusions.

9.
BMC Endocr Disord ; 24(1): 14, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38281927

ABSTRACT

BACKGROUND: Hypothyroidism is a major manifestation of autoimmune thyroid diseases (AITD). We previously reported that a low selenium (Se) status was linked to an elevated prevalence of thyroid diseases. We hypothesized that Se status may also influence the restoration of thyroid function. Thus, this study aimed to investigate the factors affecting the recovery of thyroid function in patients with (sub-)clinical hypothyroidism, with a specific focus on Se status. METHODS: We conducted a 6-year prospective cohort study comparing two counties with different Se concentrations. Demographic and disease data were collected from 1,190 individuals (549 Se-adequate and 641 Se-deficient) who completed a follow-up study in 2019. In addition, urinary iodine (I) levels, thyroid function, and serum and nail Se levels were measured. Logistic regression was used to investigate the relationship between Se deficiency and recovery of thyroid function. RESULTS: Sex and smoking status was similar between the two counties studied. Thyroid function recovery rate was significantly higher in Se-deficient counties (46.0% vs. 30.6%, P = 0.008). In the multivariate analysis, our results show that female sex (odds ratio [OR] (95% confidence interval [CI]) = 1.875 (1.080-3.257), P = 0.026] and increasing age [OR (95%CI) = 1.028(1.007-1.049), P = 0.009] were associated with the recovery rate. Additionally, our study revealed that while Se status was significant in the univariate analysis, this association appeared to disappear in the multivariate analysis. CONCLUSIONS: Female sex and increasing age have unfavorable effects on the recovery of thyroid function in patients over 30 years of age with (sub-) clinical hypothyroidism.


Subject(s)
Hypothyroidism , Selenium , Thyroid Diseases , Humans , Female , Adult , Follow-Up Studies , Prospective Studies , Hypothyroidism/epidemiology
10.
Int J Biol Sci ; 20(2): 554-568, 2024.
Article in English | MEDLINE | ID: mdl-38169732

ABSTRACT

The vertebrate adult intestinal epithelium has a high self-renewal rate driven by intestinal stem cells (ISCs) in the crypts, which play central roles in maintaining intestinal integrity and homeostasis. However, the underlying mechanisms remain elusive. Here we showed that protein arginine methyltransferase 1 (PRMT1), a major arginine methyltransferase that can also function as a transcription co-activator, was highly expressed in the proliferating cells of adult mouse intestinal crypts. Intestinal epithelium-specific knockout of PRMT1, which ablates PRMT1 gene starting during embryogenesis, caused distinct, region-specific effects on small intestine and colon: increasing and decreasing the goblet cell number in the small intestinal and colonic crypts, respectively, leading to elongation of the crypts in small intestine but not colon, while increasing crypt cell proliferation in both regions. We further generated a tamoxifen-inducible intestinal epithelium-specific PRMT1 knockout mouse model and found that tamoxifen-induced knockout of PRMT1 in the adult mice resulted in the same region-specific intestinal phenotypes. Thus, our studies have for the first time revealed that the epigenetic enzyme PRMT1 has distinct, region-specific roles in the maintenance of intestinal epithelial architecture and homeostasis, although PRMT1 may influence intestinal development.


Subject(s)
Intestine, Small , Protein-Arginine N-Methyltransferases , Animals , Mice , Arginine , Cell Proliferation/genetics , Epithelial Cells/metabolism , Homeostasis/genetics , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Mice, Knockout , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Tamoxifen
11.
Phys Chem Chem Phys ; 26(4): 3008-3019, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38179673

ABSTRACT

Rhenium sulfide (ReS2) has emerged as a promising two-dimensional material, demonstrating broad-spectrum visible absorption properties that make it highly relevant for diverse optoelectronic applications. Manipulating and optimizing the pathway of photogenerated carriers play a pivotal role in enhancing the efficiency of charge separation and transfer in novel semiconductor composites. This study focuses on the strategic construction of a semiconductor heterostructure by synthesizing ZnO on vacancy-containing ReS2 (VRe-ReS2) through chemical bonding processes. The ingeniously engineered built-in electric field within the heterostructure effectively suppresses the recombination of photogenerated electron-hole pairs. A direct and well-established interfacial connection between VRe-ReS2 and ZnO is achieved through a robust Zn-S bond. This distinctive bond configuration leads to enhanced nonlinear optical conversion efficiency, attributed to shortened carrier migration distances and accelerated charge transfer rates. Furthermore, theoretical calculations unveil the superior chemical interactions between Re vacancies and sulfide moieties, facilitating the formation of Zn-S bonds. The photoluminescence (PL) intensity is increased by the formation of VRe-ReS2 and ZnO heterostructure and the PL quantum yield of VRe-ReS2 is improved. The intricate impact of the Zn-S bond on the nonlinear absorption behavior of the VRe-ReS2@ZnO heterostructure is systematically investigated using femtosecond Z-scan techniques. The charge transfer from ZnO to ReS2 defect levels induces a transition from saturable absorption to reverse saturable absorption in the VRe-ReS2@ZnO heterostructure. Transient absorption measurements further confirm the presence of the Zn-S bond between the interfaces, as evidenced by the prolonged relaxation time (τ3) in the VRe-ReS2@ZnO heterostructure. This study offers valuable insights into the rational construction of heterojunctions through tailored interfacial bonding and surface/interface charge transfer pathways. These endeavors facilitate the modulation of electron transfer dynamics, ultimately yielding superior nonlinear optical conversion efficiency and effective charge regulation in optoelectronic functional materials.

12.
Exp Clin Endocrinol Diabetes ; 132(1): 17-22, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38237612

ABSTRACT

OBJECTIVE: Antithyroid drug (ATD)-induced agranulocytosis (TIA) is the most serious adverse effect during ATD treatment of Graves' disease (GD). Previously, the MICA gene was reported to be associated with TIA. MICA protein is an important ligand for the NKG2D protein, which is encoded by the KLRK1 gene and KLRC4-KLRK1 read-through transcription. This study further investigated the association between KLRC4-KLRK1 gene polymorphisms and susceptibility to TIA. METHODS: Twenty-eight candidate single nucleotide polymorphisms (SNPs) on KLRC4-KLRK1 read-through transcription were evaluated by the iPLEX MassARRAY system in 209 GD control patients and 38 TIA cases. RESULTS: A significant association of rs2734565 polymorphism with TIA was found (p=0.02, OR=1.80, 95% CI=1.09-2.96). The haplotype C-A-A-C-G, including rs2734565-C, was associated with a significantly higher risk of TIA (p=4.79E-09, OR=8.361, 95% CI=3.737-18.707). In addition, the interval time from hyperthyroidism to agranulocytosis onset was shorter in patients carrying the rs2734565-C allele than in non-carrying groups (45.00 (14.00-6570.00) d vs. 1080.00 (30.00-3600.00) d, p=0.046), and the interval from ATD treatment to agranulocytosis onset was also shorter in patients carrying rs2734565-C allele (29.00 (13.00-75.00) d vs. 57.50 (21.00-240.00) d, p=0.023). CONCLUSIONS: The findings suggest that the KLRC4-KLRK1 gene polymorphism is associated with susceptibility and progression of ATD-induced agranulocytosis. Patients carrying the rs2734565-C allele had a higher susceptibility and faster onset time of TIA.


Subject(s)
Agranulocytosis , Graves Disease , Hyperthyroidism , Humans , Agranulocytosis/chemically induced , Agranulocytosis/genetics , Agranulocytosis/drug therapy , Antithyroid Agents/adverse effects , Graves Disease/drug therapy , Graves Disease/genetics , Hyperthyroidism/drug therapy , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/therapeutic use , Polymorphism, Single Nucleotide
13.
Horm Metab Res ; 55(11): 745-751, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37903495

ABSTRACT

Graves' orbitopathy (GO) is the most common extrathyroidal complication of Graves' disease (GD) and severely affects quality of life. However, its pathogenesis is still poorly understood, and therapeutic options are limited. Animal models are important tools for preclinical research. The animals in some previous models only exhibited symptoms of hyperthyroidism without ocular lesions. With the improvements achieved in modeling methods, some progressive animal models have been established. Immunization of mice with A subunit of the human thyroid stimulating hormone receptor (TSHR) by either adenovirus or plasmid (with electroporation) is widely used and convincing. These models are successful to identify that the gut microbiota influences the occurrence and severity of GD and GO, and sex-related risk factors may be key contributors to the female bias in the occurrence of GO rather than sex itself. Some data provide insight that macrophages and CD8+ T cells may play an important pathogenic role in the early stage of GO. Our team also replicated the time window from GD onset to GO onset and identified a group of CD4+ cytotoxic T cells. In therapeutic exploration, TSHR derived peptides, fingolimod, and rapamycin offer new potential options. Further clinical trials are needed to investigate these drugs. With the increasing use of these animal models and more in-depth studies of the new findings, scientists will gain a clearer understanding of the pathogenesis of GO and identify more treatments for patients.


Subject(s)
Graves Disease , Graves Ophthalmopathy , Humans , Female , Mice , Animals , Graves Ophthalmopathy/etiology , Graves Ophthalmopathy/therapy , Quality of Life , Receptors, Thyrotropin , Disease Models, Animal
14.
Front Immunol ; 14: 1221493, 2023.
Article in English | MEDLINE | ID: mdl-37705971

ABSTRACT

Background: COVID-19 is a highly infectious respiratory disease that can manifest in various clinical presentations. Although many studies have reported the lipidomic signature of COVID-19, the molecular changes in asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals remain elusive. Methods: This study combined a comprehensive lipidomic analysis of 220 plasma samples from 166 subjects: 62 healthy controls, 16 asymptomatic infections, and 88 COVID-19 patients. We quantified 732 lipids separately in this cohort. We performed a difference analysis, validated with machine learning models, and also performed GO and KEGG pathway enrichment analysis using differential lipids from different control groups. Results: We found 175 differentially expressed lipids associated with SASR-CoV-2 infection, disease severity, and viral persistence in patients with COVID-19. PC (O-20:1/20:1), PC (O-20:1/20:0), and PC (O-18:0/18:1) better distinguished asymptomatic infected individuals from normal individuals. Furthermore, some patients tested positive for SARS-CoV-2 nucleic acid by RT-PCR but did not become negative for a longer period of time (≥60 days, designated here as long-term nucleic acid test positive, LTNP), whereas other patients became negative for viral nucleic acid in a shorter period of time (≤45 days, designated as short-term nucleic acid test positive, STNP). We have found that TG (14:1/14:1/18:2) and FFA (4:0) were differentially expressed in LTNP and STNP. Conclusion: In summary, the integration of lipid information can help us discover novel biomarkers to identify asymptomatic individuals and further deepen our understanding of the molecular pathogenesis of COVID-19.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2 , Plasma , Lipids
15.
Int Immunopharmacol ; 124(Pt B): 110983, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769533

ABSTRACT

BACKGROUND: The Coronavirus disease-19 (COVID-19) pandemic has posed a serious threat to global health. Thymosin α1 (Tα1) was considered to be applied in COVID-19 therapy. However, the data remains limited. METHODS: Participants with or without Tα1 treatment were recruited. Single cell RNA-sequencing (scRNA-seq) and T cell receptor-sequencing (TCR-seq) of the peripheral blood mononuclear cell (PBMC) samples were done to analyze immune features. The differential expression analysis and functional enrichment analysis were performed to explore the mechanism of Tα1 therapy. RESULTS: 33 symptomatic SARS-CoV-2-infected individuals (COV) and 11 healthy controls (HC) were enrolled in this study. The proportion of CD3+ KLRD1+ NKT, TBX21+ CD8+ NKT was observed to increase in COVID-19 patients with Tα1 treatment (COVT) than those without Tα1 (COV) (p = 0.024; p = 0.010). These two clusters were also significantly higher in Health controls with Tα1 treatment (HCT) than those without Tα1 (HC) (p = 0.016; p = 0.031). Besides, a series of genes and pathways related to immune responses were significantly higher enriched in Tα1 groups TBX21+ CD8+ NKT, such as KLRB1, PRF1, natural killer cell-mediated cytotoxicity pathway, chemokine signaling pathway, JAK-STAT signaling pathway. The increased TRBV9-TRBJ1-1 pair existed in both HCs and COVID-19 patients after Tα1 treatment. 1389 common complementarity determining region 3 nucleotides (CDR 3 nt) were found in COV and HC, while 0 CDR 3 nt was common in COVT and HCT. CONCLUSIONS: Tα1 increased CD3+ KLRD1+ NKT, TBX21+ CD8+ NKT cell proportion and stimulated the diversity of TCR clones in COVT and HCT. And Tα1 could regulate the expression of genes associated with NKT activation or cytotoxicity to promote NKT cells. These data support the use of Tα1 in COVID-19 patients.


Subject(s)
COVID-19 , Thymosin , Humans , Thymalfasin/therapeutic use , Thymosin/genetics , Thymosin/metabolism , Leukocytes, Mononuclear/metabolism , SARS-CoV-2/metabolism , Receptors, Antigen, T-Cell/genetics
16.
Nurs Open ; 10(10): 6827-6835, 2023 10.
Article in English | MEDLINE | ID: mdl-37452509

ABSTRACT

AIM: Analysed clinical characteristics and influencing factors for hypoglycemia in hospitalized patients with type 2 diabetes mellitus (T2DM), and providing a scientific reference for precision nursing care of hypoglycemia in hospitalized patients with T2DM. DESIGN: A cross-sectional study. METHODS: This study involved 378 hospitalized patients diagnosed with T2DM who have suffered hypoglycemia. Through questionnaires and electronic medical records to obtain the data concerning the general information, clinical symptoms, all recorded blood glucose information, and the diabetes knowledge and self-management level of the patients. The clinical characteristics and influencing factors for hypoglycemia were analysed on the basis of the classification of hypoglycemia published by the American Diabetes Association in 2020. RESULTS: Among 378 patients, 207 patients (54.76%) were experiencing Grade 1 hypoglycemia and 171 patients (45.24%) were experiencing Grade 2 hypoglycemia. Hypoglycemia and Grade 2 hypoglycemia in patients with T2DM occurred predominantly within the first 3 days of hospitalization. Hypoglycemia occurred most frequently after breakfast (74 cases, 19.6%), of which Grade 1 hypoglycemia and Grade 2 hypoglycemia accounted for 50%, respectively. Multivariable logistic regression identified risk factors for Grade 2 hypoglycemia in hospitalized patients with type 2 diabetes: older age, longer duration of diabetes, low body weight, diabetic nephropathy stages 4-5, diabetic autonomic neuropathy, inadequate self-management ability and diabetes knowledge, and lower educational background. CONCLUSIONS: Hypoglycemia in type 2 diabetes occurs in the first 3 days during the hospitalization and most often after breakfast during the full day. Identifying high-risk individuals and providing a scientific reference for precision nursing care of hypoglycemia in hospitalized patients with T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemia , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/chemically induced , Hypoglycemic Agents/adverse effects , Cross-Sectional Studies , Hypoglycemia/diagnosis , Hypoglycemia/etiology , Blood Glucose
17.
J Transl Med ; 21(1): 74, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737819

ABSTRACT

BACKGROUND: CD4+ cytotoxic T cells (CD4 CTLs) are CD4+ T cells with major histocompatibility complex-II-restricted cytotoxic function. Under pathologic conditions, CD4 CTLs hasten the development of autoimmune disease or viral infection by enhancing cytotoxicity. However, the regulators of the cytotoxicity of CD4 CTLs are not fully understood. METHODS: To explore the potential regulators of the cytotoxicity of CD4 CTLs, bulk RNA and single-cell RNA sequencing (scRNA-seq), enzyme-linked immunosorbent assay, flow cytometry, quantitative PCR, and in-vitro stimulation and inhibition assays were performed. RESULTS: In this study, we found that VEGF-A promoted the cytotoxicity of CD4 CTLs through scRNA-seq and flow cytometry. Regarding the specific VEGF receptor (R) involved, VEGF-R1/R2 signaling was activated in CD4 CTLs with increased cytotoxicity, and the VEGF-A effects were inhibited when anti-VEGF-R1/R2 neutralizing antibodies were applied. Mechanistically, VEGF-A treatment activated the AKT/mTOR pathway in CD4 CTLs, and the increases of cytotoxic molecules induced by VEGF-A were significantly reduced when the AKT/mTOR pathway was inhibited. CONCLUSION: In conclusion, VEGF-A enhances the cytotoxicity of CD4 CTLs through the VEGF-R1/VEGF-R2/AKT/mTOR pathway, providing insights for the development of novel treatments for disorders associated with CD4 CTLs.


Subject(s)
Antineoplastic Agents , T-Lymphocytes, Cytotoxic , CD4-Positive T-Lymphocytes , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-1 , Vascular Endothelial Growth Factor Receptor-2
18.
bioRxiv ; 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36789439

ABSTRACT

The intestine is critical for not only processing and resorbing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell-specific knockout ( ΔIEC ) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5 ΔIEC reduces mTORC1 signaling. Surprisingly, Slc7a5 ΔIEC mice have increased cell proliferation but reduced secretory cells, particularly mature Paneth cells. scRNA-seq and electron microscopic analyses revealed dedifferentiation of Paneth cells in Slc7a5 ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. We further show that Slc7a5 ΔIEC mice are prone to experimental colitis. Thus, SLC7A5 regulates secretory cell differentiation to affect stem cell niche and/or inflammatory response to regulate cell proliferation.

19.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: mdl-36580373

ABSTRACT

CD4+ cytotoxic T lymphocytes (CTLs) were recently implicated in immune-mediated inflammation and fibrosis progression of Graves' orbitopathy (GO). However, little is known about therapeutic targeting of CD4+ CTLs. Herein, we studied the effect of rapamycin, an approved mTOR complex 1 (mTORC1) inhibitor, in a GO mouse model, in vitro, and in patients with refractory GO. In the adenovirus-induced model, rapamycin significantly decreased the incidence of GO. This was accompanied by the reduction of both CD4+ CTLs and the reduction of orbital inflammation, adipogenesis, and fibrosis. CD4+ CTLs from patients with active GO showed upregulation of the mTOR pathway, while rapamycin decreased their proportions and cytotoxic function. Low-dose rapamycin treatment substantially improved diplopia and the clinical activity score in steroid-refractory patients with GO. Single-cell RNA-Seq revealed that eye motility improvement was closely related to suppression of inflammation and chemotaxis in CD4+ CTLs. In conclusion, rapamycin is a promising treatment for CD4+ CTL-mediated inflammation and fibrosis in GO.


Subject(s)
Graves Ophthalmopathy , Mice , Animals , Graves Ophthalmopathy/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Sirolimus , Inflammation , CD4-Positive T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases , Fibrosis
20.
Front Endocrinol (Lausanne) ; 14: 1337469, 2023.
Article in English | MEDLINE | ID: mdl-38288472

ABSTRACT

Background: Diabetic nephropathy (DN) is one of the most prevalent and severe microvascular complications of type 2 diabetes (T2DM). However, little is currently known about the pathogenesis and its associated risk factors in DN. The present study aims to investigate the potential risk factors of DN in patients with T2DM. Methods: A total of 6,993 T2DM patients, including 5,089 participants with DN and 1,904 without DN, were included in this cross-sectional study. Comparisons between the two groups (DN vs. non-DN) were carried out using Student's t-test, Mann-Whitney U-test, or Pearson's Chi-squared test. Spearman's correlation analyses were performed to assess the correlations of serum lipids and indicators of renal impairment. Logistic regression models were applied to assess the relationship between blood lipid indices and the presence of DN. Results: T2DM patients with DN were older, and had a longer duration of diagnosed diabetes compared to those without DN. Of note, the DN patients also more likely develop metabolic disorders. Among all serum lipids, Lipoprotein(a) [Lp(a)] was the most significantly correlated indicators of renal impairment. Moreover, univariate logistic regression showed that elevated Lp(a) level was associated with an increased risk of DN. After adjusted for confounding factors, including age, gender, duration of T2DM, BMI, SBP, DBP and lipid-lowering drugs usage, Lp(a) level was independently positively associated with the risk of DN [odds ratio (OR):1.115, 95% confidence interval (CI): 1.079-1.151, P=6.06×10-11]. Conclusions: Overall, we demonstrated that serum Lp(a) level was significantly positively associated with an increased risk of DN, indicating that Lp(a) may have the potential as a promising target for the diagnosis and treatment of diabetic nephropathy.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/etiology , Cross-Sectional Studies , Lipoprotein(a) , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL