Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Mikrochim Acta ; 191(6): 305, 2024 05 07.
Article En | MEDLINE | ID: mdl-38713444

A multifunctional surface-enhanced Raman scattering (SERS) platform integrating sensitive detection and drug resistance analysis was developed for Gram-positive bacteria. The substrate was based on self-assembled Ti3C2Tx@Au NPs films and capture molecule phytic acid (IP6) to achieve specific capture of Gram-positive bacteria and different bacteria were analyzed by fingerprint signal. It had advantages of good stability and homogeneity (RSD = 8.88%). The detection limit (LOD) was 102 CFU/mL for Staphylococcus aureus and 103 CFU/mL for MRSA, respectively. A sandwich structure was formed on the capture substrate by signal labels prepared by antibiotics (penicillin G and vancomycin) and non-interference SERS probe molecules (4-mercaptobenzonitrile (2223 cm-1) and 2-amino-4-cyanopyridine (2240 cm-1)) to improve sensitivity. The LOD of Au NPs@4-MBN@PG to S. aureus and Au NPs@AMCP@Van to MRSA and S. aureus were all improved to 10 CFU/mL, with a wide dynamic linear range from 108 to 10 CFU/mL (R2 ≥ 0.992). The SERS platform can analyze the drug resistance of drug-resistant bacteria. Au NPs@4-MBN@PG was added to the substrate and captured MRSA to compare the SERS spectra of 4-MBN. The intensity inhomogeneity of 4-MBN at the same concentrations of MRSA and the nonlinearity at the different concentrations of MRSA revealed that MRSA was resistant to PG. Finally, the SERS platform achieved the determination of MRSA in blood. Therefore, this SERS platform has great significance for the determination and analysis of Gram-positive bacteria.


Anti-Bacterial Agents , Gold , Limit of Detection , Metal Nanoparticles , Spectrum Analysis, Raman , Staphylococcus aureus , Titanium , Spectrum Analysis, Raman/methods , Gold/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Vancomycin/pharmacology , Vancomycin/chemistry , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Penicillin G/pharmacology , Penicillin G/chemistry , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122843, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37207571

Recent years, two-dimensional transition metal carbonitrides (MXene) have attracted much attention in the field of surface-enhanced Raman scattering (SERS). However, the relatively low enhancement of MXene is a major challenge. Herein, Nb2C-Au NPs nanocomposites were prepared by electrostatic self-assembly method, which have a synergistically conjugated SERS effect. The EM hot spots of Nb2C-Au NPs are significantly enlarged and expanded, while the surface Fermi level is decreased. This synergistic effect could improve the SERS performance of the system. Consequently, for the dye molecules CV and MeB, the detection limits reach 10-10 M and 10-9 M, respectively, while for biomolecule adenine, the detection limit is as low as 5 × 10-8 M. The results also show the good concentration-dependent linearity, uniformity, reproducibility and stability of SERS substrate. Nb2C-Au NPs could be a fast, sensitive and stable SERS platform for label-free and non-destructive detection. This work may expand the application of MXene based materials in the field of SERS.

3.
Cell Biochem Funct ; 39(6): 763-770, 2021 Aug.
Article En | MEDLINE | ID: mdl-34028068

Colorectal cancer (CRC) is one of the most common malignant tumours in the world. Recent reports have revealed natural products displayed inhibition on colon cancer potential by suppressing transforming growth factor-ß/Smads induced epidermal-mesenchymal transition (EMT). In this article, 12 kinds of natural berberine analogues were screened for their effects on the inhibition of the colon cancer cells, the results showed that demethyleneberberine (DM-BBR) exhibited an interesting and potential effect on inducing the apoptosis of HCT-116 cells with drug concentrations of 6, 12 and 18 µM. Particularly, DM-BBR reversed the EMT process by inhibiting the expression of p-Smad2 and p-Smad3 in the transforming growth factor-ß/Smads signal pathway, up-regulated pro-apoptotic protein cleaved caspase-9, and blocked cell cycle at the S phase and increasing the expression of cyclin proteins P27 and P21. Taken together, these findings suggested that DM-BBR could promote apoptosis and suppress TGF-ß/Smads induced EMT in the colon cancer cells HCT-116.


Antineoplastic Agents/pharmacology , Berberine/analogs & derivatives , Colonic Neoplasms/drug therapy , Epithelial-Mesenchymal Transition/drug effects , Smad2 Protein/antagonists & inhibitors , Smad3 Protein/antagonists & inhibitors , Transforming Growth Factor beta/antagonists & inhibitors , Apoptosis/drug effects , Berberine/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Molecular Structure , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Tumor Cells, Cultured
4.
Biomed Pharmacother ; 129: 110441, 2020 Sep.
Article En | MEDLINE | ID: mdl-32580047

Caffeine (1,3,7-trimethylxanthine) is a xanthine alkaloid found in a number of dietary products consumed worldwide, such as coffee, tea, and soft beverages, and is known to act as a modifying agent for cytotoxic chemotherapeutic drugs. Studies have shown that caffeine reduces the cytotoxic effects of paclitaxel and inhibits paclitaxel-induced apoptosis; however, the underlying mechanism remains unclear. Here, we investigated whether caffeine inhibits the antitumor activity of paclitaxel via down-regulation of α-tubulin acetylation. In vitro studies, involving MTT assay, wound-healing assay, cell apoptosis assay, and western blotting analysis of A549 and HeLa cells, were performed. A549 and HeLa cell-based xenografts were established, and western blotting and immunohistochemical staining were performed for in vivo studies. The results showed that caffeine promoted the growth of cancer cells treated with paclitaxel. Additionally, caffeine enhanced migration ability, inhibited apoptosis, and decreased the acetylation of α-tubulin in paclitaxel-treated cancer cells. Furthermore, caffeine decreased the inhibitory effect of paclitaxel on tumor growth through down-regulation of α-tubulin acetylation in vivo. Taken together, these findings demonstrate that caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylation, suggesting that patients receiving treatment with taxanes, such as paclitaxel, should avoid consuming caffeinated beverages or foods.


Antineoplastic Agents, Phytogenic/antagonists & inhibitors , Caffeine/pharmacology , Lung Neoplasms/drug therapy , Paclitaxel/antagonists & inhibitors , Tubulin/metabolism , Uterine Cervical Neoplasms/drug therapy , A549 Cells , Acetylation , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Interactions , Female , HeLa Cells , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Paclitaxel/pharmacology , Protein Processing, Post-Translational , Signal Transduction , Tumor Burden/drug effects , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Xenograft Model Antitumor Assays
5.
Rev Sci Instrum ; 89(9): 093114, 2018 Sep.
Article En | MEDLINE | ID: mdl-30278730

CCD-based fluorescence tomography is widely used for small animal whole-body imaging. In this report, systematic signal-to-noise ratio (SNR) analyses of a fluorescence tomography imaging (FTI) system were performed, resulting in an easy-to-follow strategy to optimize hardware configurations and operational conditions for acquiring high-quality imaging data and for improving the overall system performance. Phantom experiments were conducted to demonstrate the performance improvement by these optimizations. The improved performance was further verified by imaging a tumor-bearing mouse in vivo. This report provides general and practical guidelines for setting up a high-performance electron multiplying charge coupled device based FTI system to achieve an optimized SNR, which can be useful for future FTI technology development.


Fluorescence , Signal-To-Noise Ratio , Tomography/methods , Animals , Cell Line, Tumor , Mice , Time Factors
...