Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 236
Filter
1.
Transl Oncol ; 47: 102040, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954975

ABSTRACT

BACKGROUND AND PURPOSE: Regorafenib was approved by the US Food and Drug Administration (FDA) for hepatocellular carcinoma (HCC) patients showing progress on sorafenib treatment. However, there is an inevitably high rate of drug resistance associated with regorafenib, which reduces its effectiveness in clinical treatment. Thus, there is an urgent need to find a potential way to solve the problem of regorafenib resistance. The metabolite of disulfiram complexed with copper, the Diethyldithiocarbamate-copper complex (CuET), has been found to be an effective anticancer drug candidate. In the present study, we aimed to evaluate the effect of CuET on regorafenib resistance in HCC and uncover the associated mechanism. EXPERIMENTAL APPROACH: Regorafenib-resistant HCC strains were constructed by applying an increasing concentration gradient. This study employed a comprehensive range of methodologies, including the cell counting kit-8 (CCK-8) assay, colony formation assay, cell cycle analysis, wound healing assay, Transwell assay, tumor xenograft model, and immunohistochemical analysis. These methods were utilized to investigate the antitumor activity of CuET, assess the combined effect of regorafenib and CuET, and elucidate the molecular mechanism underlying CuET-mediated regorafenib resistance. KEY RESULTS: The inhibitory effect of regorafenib on cell survival, proliferation and migration was decreased in regorafenib-resistant MHCC-97H (MHCC-97H/REGO) cells compared with parental cells. CuET demonstrated significant inhibitory effects on cell survival, proliferation, and migration of various HCC cell lines. CuET restored the sensitivity of MHCC-97H/REGO HCC cells to regorafenib in vitro and in vivo. Mechanistically, CuET reverses regorafenib resistance in HCC by suppressing epithelial-mesenchymal transition (EMT) through inhibition of the ERK signaling pathway. CONCLUSION AND IMPLICATIONS: Taken together, the results of this study demonstrated that CuET inhibited the activation of the ERK signaling pathway, leading to the suppression of the epithelial-mesenchymal transition (EMT) and subsequently reversing regorafenib resistance in HCC both in vivo and in vitro. This study provides a new idea and potential strategy to improve the treatment of regorafenib-resistant HCC.

2.
Cancer Innov ; 3(4): e123, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948252

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) is in urgent need of a second-line or later-line treatment strategy. We aimed to analyze the efficacy and safety of additional anlotinib, specifically anlotinib in combination with immunotherapy, in patients with PDAC who have failed first-line therapy. Methods: Patients with pathological diagnosis of PDAC were additionally treated with anlotinib, and some patients were treated with anti-PD-1 agents at the same time, which could be retrospectively analyzed. The efficacy and safety of additional anlotinib were evaluated. Results: A total of 23 patients were included. In patients treated with additional anlotinib, the overall median progression-free survival (PFS) was 1.8 months and the median overall survival (OS) was 6.3 months, regardless of anti-PD-1 agents. Among patients receiving additional anlotinib in combination with anti-PD-1 agents, median PFS and OS were 1.8 and 6.5 months, respectively. Adverse events (AEs) were observed in 16 patients (69.6%). In patients treated with additional anlotinib, the majority of AEs were grade 1-3. Univariate analysis revealed that patients with baseline red blood cell distribution width (RDW) <14% treated with additional anlotinib plus anti-PD-1 agents had significantly longer OS than patients with baseline RDW ≥14% (p = 0.025). Patients with additional anlotinib plus anti-PD-1 agents as second-line therapy had a longer OS than those treated as later-line therapy (p = 0.012). Multivariate analysis showed that baseline RDW was the only independent risk factor for OS (p = 0.042). Conclusion: The combination of anlotinib and immunotherapy represents an effective add-on therapy with tolerable AEs as second- or later-line therapy in patients with PDAC, particularly in patients with baseline RDW <14%.

3.
Behav Sci (Basel) ; 14(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38920835

ABSTRACT

The workforce is aging with the population aging. How to effectively manage and motivate older workers is significant for elderly human resources development and the sustainable development of enterprises in organizations. Age stereotypes of older workers refer to people's beliefs and expectations about a specific group of 45-65-year-olds in the workplace. This paper examines the effect of age stereotypes of older workers on job performance and intergenerational knowledge transfer intention. This study carried out two research designs, a questionnaire survey and an experimental study, to explore the effects of positive and negative age stereotypes of older workers on job performance and intergenerational knowledge transfer intention within an organizational context and underlying mediating mechanisms. The results showed that positive stereotypes of older workers significantly positively affected job performance and intergenerational knowledge transfer intention. In comparison, negative stereotypes of older workers significantly negatively affected job performance and intergenerational knowledge transfer intention, and self-perception of aging substantially mediates the effects. This study broadens the research field on the impact of positive and negative age stereotypes on older workers in organizational contexts. This study guides organizations in reducing age discrimination, creating an inclusive workplace environment, and achieving the successful aging of older workers.

4.
J Am Chem Soc ; 146(26): 17728-17737, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38899504

ABSTRACT

Targeted protein degradation technology holds great potential in biomedicine, particularly in treating tumors and other protein-related diseases. Research on intracellular protein degradation using molecular glues and PROTAC technology is leading, while research on the degradation of membrane proteins and extracellular proteins through the lysosomal pathway is still in the preclinical stage. The scarcity of useful targets is an immense limitation to technological advancement, making it essential to explore novel, potentially effective approaches for targeted lysosomal degradation. Here, we employed the glucose transporter Glut1 as an innovative lysosome-targeting receptor and devised the Glut1-Facilitated Lysosomal Degradation (GFLD) strategy. We synthesized potential Glut1 ligands via reversible addition-fragmentation chain transfer (RAFT) polymerization and acquired antibody-glycooligomer conjugates through bioorthogonal reactions as lysosome-targeting protein degradation molecules, utilized in the management of PD-L1 high-expressing triple-negative breast cancer. The glucose transporter Glut1 as a lysosome-targeting receptor exhibits potential for the advancement of a broader array of medications in the future.


Subject(s)
Glucose Transporter Type 1 , Lysosomes , Proteolysis , Lysosomes/metabolism , Glucose Transporter Type 1/metabolism , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Ligands
5.
Hum Genet ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833008

ABSTRACT

The long noncoding RNA CDKN2B-AS1 harbors a major coronary artery disease risk haplotype, which is also associated with progressive forms of the oral inflammatory disease periodontitis as well as myocardial infarction (MI). Despite extensive research, there is currently no broad consensus on the function of CDKN2B-AS1 that would explain a common molecular role of this lncRNA in these diseases. Our aim was to investigate the role of CDKN2B-AS1 in gingival cells to better understand the molecular mechanisms underlying the increased risk of progressive periodontitis. We downregulated CDKN2B-AS1 transcript levels in primary gingival fibroblasts with LNA GapmeRs. Following RNA-sequencing, we performed differential expression, gene set enrichment analyses and Western Blotting. Putative causal alleles were searched by analyzing associated DNA sequence variants for changes of predicted transcription factor binding sites. We functionally characterized putative functional alleles using luciferase-reporter and antibody electrophoretic mobility shift assays in gingival fibroblasts and HeLa cells. Of all gene sets analysed, collagen biosynthesis was most significantly upregulated (Padj=9.7 × 10- 5 (AUC > 0.65) with the CAD and MI risk gene COL4A1 showing strongest upregulation of the enriched gene sets (Fold change = 12.13, Padj = 4.9 × 10- 25). The inflammatory "TNFA signaling via NFKB" gene set was downregulated the most (Padj=1 × 10- 5 (AUC = 0.60). On the single gene level, CAPNS2, involved in extracellular matrix organization, was the top upregulated protein coding gene (Fold change = 48.5, P < 9 × 10- 24). The risk variant rs10757278 altered a binding site of the pathogen responsive transcription factor STAT1 (P = 5.8 × 10- 6). rs10757278-G allele reduced STAT1 binding 14.4% and rs10757278-A decreased luciferase activity in gingival fibroblasts 41.2% (P = 0.0056), corresponding with GTEx data. CDKN2B-AS1 represses collagen gene expression in gingival fibroblasts. Dysregulated collagen biosynthesis through allele-specific CDKN2B-AS1 expression in response to inflammatory factors may affect collagen synthesis, and in consequence tissue barrier and atherosclerotic plaque stability.

6.
Transl Lung Cancer Res ; 13(3): 552-572, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38601452

ABSTRACT

Background: With its diverse genetic foundation and heterogeneous nature, non-small cell lung cancer (NSCLC) needs a better comprehension of prognostic evaluation and efficient treatment targeting. Methods: Bioinformatics analysis was performed of The Cancer Genome Atlas (TCGA)-NSCLC and GSE68571 dataset. Overlapping differentially expressed genes (DEGs) were used for functional enrichment analysis and constructing the protein-protein interaction (PPI) network. In addition, key prognostic genes were identified through prognostic risk models, and their expression levels were verified. The phenotypic effects of cell division cycle 25C (CDC25C) regulation on NSCLC cell lines were assessed by in vitro experiments using various techniques such as flow cytometry, Transwell, and colony formation. Protein levels related to autophagy and apoptosis were assessed, specifically examining the impact of autophagy inhibition [3-methyladenine (3-MA)] and the miR-142-3p/CDC25C axis on this regulatory system. Results: CDC25C was identified as a key prognostic marker in NSCLC, showing high expression in tumor samples. In vitro experiments showed that CDC25C knockdown markedly reduced the capacity of cells to proliferate, migrate, invade, trigger apoptosis, and initiate cell cycle arrest. CDC25C and miR-142-3p displayed a reciprocal regulatory relationship. CDC25C reversed the inhibitory impacts of miR-142-3p on NSCLC cell cycle proliferation and progression. The synergy of miR-142-3p inhibition, CDC25C silencing, and 3-MA treatment was shown to regulate NSCLC cell processes including proliferation, apoptosis, and autophagy. Conclusions: MiR-142-3p emerged as a key player in governing autophagy and apoptosis by directly targeting CDC25C expression. This emphasizes the pivotal role of the miR-142-3p/CDC25C axis as a critical regulatory pathway in NSCLC.

7.
Article in English | MEDLINE | ID: mdl-38581316

ABSTRACT

Objective: To explore and evaluate the effect of the accountability rehabilitation nursing model in the care of patients with ischemic stroke and the impact on nursing satisfaction, in order to improve the quality of care for patients with ischemic stroke. Design: This study selected 92 patients with ischemic stroke who met the inclusion criteria as the study objects, and divided them equally into the control group (46 cases) and the research group (46 cases) using a random number table. Data were collected by questionnaire. Interventions: The control group received standard routine rehabilitation nursing care, while the study group underwent an accountable rehabilitation care model. In the accountable rehabilitation care model, distinct nursing practices and strategies were employed to enhance clinical outcomes, limb function, neurological function, quality of life, and nursing satisfaction. Key elements of this model may include personalized care plans, increased emphasis on patient engagement, targeted therapeutic interventions, and a systematic approach to care coordination. A comparative analysis was conducted before and after the intervention to highlight the nuanced differences in outcomes between the two groups, shedding light on the specific benefits and effectiveness of the accountable rehabilitation care model as opposed to routine rehabilitation care. Results: In terms of clinical outcomes, the ESS score of the study group after intervention was significantly higher than that of the control group, indicating a positive impact on overall health (P < .05); limb function assessed by upper and lower limb muscle strength scores improved in both groups after the intervention. There was a significant enhancement, in which the score of the study group was significantly higher than that of the control group (P < .05); the NIHSS score showed that compared with the control group, the neurological function of the study group was significantly improved (P < .05); the SS-QOL score was used The assessed quality of life also improved significantly in the study group, exceeding the scores in the control group (P < .05). In addition, the nursing satisfaction of the study group was significantly higher compared with the control group, which highlighted the positive acceptance of the responsible rehabilitation nursing model by nursing staff (P < .05). Together, these findings highlight the combined benefits of the intervention in enhancing clinical, functional, and subjective outcomes. Discussion: The study underscores the promising clinical benefits of the responsibility system rehabilitation nursing model for patients with ischemic stroke. Marked enhancements in clinical outcomes, limb and nerve function, quality of life, and nursing satisfaction indicate its potential to significantly improve patient care. The personalized and accountable approach, featuring tailored care plans and heightened emphasis on patient engagement, holds promise for fostering positive health outcomes and enhancing overall patient experiences. Integrating this model into routine stroke care protocols emerges as a pivotal strategy for optimizing rehabilitation processes and adopting a patient-centered approach. Despite these advantages, acknowledging study limitations, such as non-randomized participant allocation and the absence of blinding, is crucial to recognizing potential biases. The study's sample size and single-center focus may impact generalizability. Beyond ischemic stroke, the model's broader significance aligns with contemporary healthcare trends, emphasizing accountability, personalized care plans, and enhanced care coordination. Its potential adaptation to various healthcare settings, chronic disease management, and preventive care could contribute to improved patient outcomes and healthcare quality. Future research should explore scalability and sustainability across diverse healthcare settings, investigating applicability to different patient populations and medical conditions. Assessing long-term effects, including healthcare cost-effectiveness and patient adherence, is essential for a comprehensive understanding of impact. Furthermore, delving into the perspectives of healthcare providers and patients can refine and tailor implementation strategies for optimal outcomes. Results: After the intervention, The European Stroke Scale (ESS) score of the study group was higher than that of the control group. After the intervention, the muscle strength scores of the upper and lower limbs of the study group were significantly higher than those of the control group. After intervention, the National Institutes of Health Stroke Scale (NIHSS) score of the study group was lower than that of the control group. After intervention, the stroke-specific quality of life scale (SS-QOL) score of the study group was higher than that of the control group. The nursing satisfaction of the study group was higher than that of the control group after intervention (all P < .05). Conclusion: The results of the study showed that the responsibility system rehabilitation nursing mode showed significant effects in improving the limb function, neurological function and quality of life of patients with ischemic stroke, which could promote the disease outcome of patients, and the nursing satisfaction of patients was high, which was worthy of promotion.

8.
Biosens Bioelectron ; 257: 116303, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38663326

ABSTRACT

Discriminating secretory phenotypes provides a direct, intact, and dynamic way to evaluate the heterogeneity in cell states and activation, which is significant for dissecting non-genetic heterogeneity for human health studies and disease diagnostics. In particular, secreted microRNAs, soluble signaling molecules released by various cells, are increasingly recognized as a critical mediator for cell-cell communication and the circulating biomarkers for disease diagnosis. However, single-cell analysis of secreted miRNAs is still lacking due to the limited available tools. Herein, we realized three-plexed miRNA secretion analysis over four time points from single cells encapsulated in picoliter droplets with extreme simplicity, coupling vortexing-generated single-cell droplets with multiplexed molecular beacons. Notably, our platform only requires pipetting and vortexing steps to finish the assay setup within 5 min with minimal training, and customized software was developed for automatic data quantification. Applying the platform to human cancer cell lines and primary cells revealed previously undifferentiated heterogeneity and paracrine signaling underlying miRNA secretion. This platform can be used to dissect secretion heterogeneity and cell-cell interactions and has the potential to become a widely used tool in biomedical research.


Subject(s)
Biosensing Techniques , MicroRNAs , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , MicroRNAs/genetics , Biosensing Techniques/methods , Cell Communication , Cell Line, Tumor
9.
Environ Sci Pollut Res Int ; 31(20): 29497-29512, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38578591

ABSTRACT

Using Euryale ferox husk as raw material, pristine biochar (EBC), Bi2MoO6-modified biochar (BM-EBC), and BiFeO3-modified biochar (BF-EBC) were prepared and employed for decontaminating Congo red (CR) from wastewater. Compared with EBC (217.59 mg/g) and BF-EBC (359.49 mg/g), a superior adsorption capacity of 460.77 mg/g was achieved by BM-EBC. Based on the evaluation results of the Freundlich and pseudo-second-order models, multilayer chemisorption was suggested as the adsorption mechanism. The adsorption process of BM-EBC was spontaneous and endothermic, and the rate-limiting step pertained to liquid film diffusion and intraparticle diffusion. The underlying removal mechanism was explored via SEM, BET, FTIR, XPS, Raman spectra, and Zeta potential analyses. The introduction of bismuth oxymetallates with their high number of M-O (M: Bi, Mo, Fe) structural elements provided the adsorbent with enlarged surface areas and reinforced oxygen functional groups, thereby promoting pore filling, π-π interactions, hydrogen bonding, and complexation, leading to enhanced adsorption capacity. These results demonstrate that Euryale ferox husk biochar modified by bismuth oxymetallates has high prospects for valorizing biomass waste and removing CR from wastewater.


Subject(s)
Bismuth , Charcoal , Congo Red , Wastewater , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Wastewater/chemistry , Bismuth/chemistry , Congo Red/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods
10.
J Cosmet Dermatol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654514

ABSTRACT

BACKGROUND: Facial cutaneous sporotrichosis presents with diverse clinical manifestations, often leading to misdiagnosis. OBJECTIVE: This study aims to present the clinical characteristics of five misdiagnosed cases of facial cutaneous sporotrichosis, aiming to enhance understanding of this disease and prevent misdiagnosis and mistreatment. METHODS: Clinical data, histopathology, and fungal culture results of these five cases were comprehensively analyzed. RESULTS: Among these five patients, three presented with lymphocutaneous sporotrichosis, while two had the fixed cutaneous type. Due to misdiagnosis, initial treatments were ineffective for all patients. Upon histopathological examination and fungal culture confirming sporotrichosis, treatment with itraconazole for 3 months led to complete resolution of lesions. While one patient experienced a relapse due to noncompliance with the prescribed medication. CONCLUSION: Facial sporotrichosis, with its diverse clinical manifestations and obscure trauma history, is prone to misdiagnosis. Timely and thorough examinations are crucial for precise diagnosis and management. Itraconazole treatment demonstrated notable efficacy, and patient compliance is also essential for favorable outcomes.

11.
FEBS Open Bio ; 14(5): 831-842, 2024 May.
Article in English | MEDLINE | ID: mdl-38531630

ABSTRACT

The important role of cholesterol in tumor metastasis has been widely studied in recent years. Ezetimibe is currently the only selective cholesterol uptake inhibitor on the market. Here, we explored the effect of ezetimibe on breast cancer metastasis by studying its impact on breast cancer cell migration, invasion, and epithelial-mesenchymal transition (EMT). Differential gene expression analysis and validation were also carried out to compare ezetimibe-treated and untreated breast cancer cells. Finally, breast cancer cells overexpressing TGFß2 were constructed, and the effect of TGFß2 on the migration and invasion of ezetimibe-treated breast cancer cells was examined. Our results show that ezetimibe treatment of breast cancer cells inhibited cell migration, invasion, and EMT, and it significantly suppressed the expression of TGFß2. Overexpression of TGFß2 reversed the inhibitory effect of ezetimibe on the migration and invasion of breast cancer cells. Taken together, our results suggest that ezetimibe might be a potential candidate for the treatment of breast cancer metastasis.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Ezetimibe , Transforming Growth Factor beta2 , Triple Negative Breast Neoplasms , Humans , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/drug effects , Ezetimibe/pharmacology , Transforming Growth Factor beta2/metabolism , Female , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Neoplasm Invasiveness , Gene Expression Regulation, Neoplastic/drug effects
12.
Sci Total Environ ; 919: 170912, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38354794

ABSTRACT

Agricultural ditches are significant methane (CH4) sources since substantial nutrient inputs stimulate CH4 production and emission. However, few studies have quantified the role of diffusion and ebullition pathways in total CH4 emission from agricultural ditches. This study measured the spatiotemporal variations of diffusive and ebullitive CH4 fluxes from a multi-level ditch system in a typical temperate agriculture area, and assessed their contributions to the total CH4 emission. Results illustrated that the mean annual CH4 flux in the ditch system reached 1475.1 mg m-2 d-1, among which 1376.7 mg m-2 d-1 was emitted via diffusion and 98.5 mg m-2 d-1 via ebullition. Both diffusive and ebullitive fluxes varied significantly across different types of ditches and seasons, with diffusion dominating CH4 emission in middle-size ditches and ebullition dominating in large-size ditches. Diffusion was primarily driven by large nutrient inputs from adjacent farmlands, while hydrological factors like water temperature and depth controlled ebullition. Overall, CH4 emission accounted for 86 % of the global warming potential across the ditch system, with 81 % attributed to diffusion and 5 % to ebullition. This study highlights the importance of agricultural ditches as hotspots for CH4 emissions, particularly the dominant role of the diffusion pathway.

13.
Angew Chem Int Ed Engl ; 63(14): e202318897, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38326236

ABSTRACT

Mirror-image proteins (D-proteins) are useful in biomedical research for purposes such as mirror-image screening for D-peptide drug discovery, but the chemical synthesis of many D-proteins is often low yielding due to the poor solubility or aggregation of their constituent peptide segments. Here, we report a Lys-C protease-cleavable solubilizing tag and its use to synthesize difficult-to-obtain D-proteins. Our tag is easily installed onto multiple amino acids such as DLys, DSer, DThr, and/or the N-terminal amino acid of hydrophobic D-peptides, is impervious to various reaction conditions, such as peptide synthesis, ligation, desulfurization, and transition metal-mediated deprotection, and yet can be completely removed by Lys-C protease under denaturing conditions to give the desired D-protein. The efficacy and practicality of the new method were exemplified in the synthesis of two challenging D-proteins: D-enantiomers of programmed cell death protein 1 IgV domain and SARS-CoV-2 envelope protein, in high yield. This work demonstrates that the enzymatic cleavage of solubilizing tags under denaturing conditions is feasible, thus paving the way for the production of more D-proteins.


Subject(s)
Peptides , Proteins , Proteins/chemistry , Peptides/chemistry , Amino Acids/chemistry , Chemistry Techniques, Synthetic/methods , Peptide Hydrolases , Endopeptidases
14.
Cell Rep ; 43(2): 113746, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38329873

ABSTRACT

Lactic acid has emerged as an important modulator of immune cell function. It can be produced by both gut microbiota and the host metabolism at homeostasis and during disease states. The production of lactic acid in the gut microenvironment is vital for tissue homeostasis. In the present study, we examined how lactic acid integrates cellular metabolism to shape the epigenome of macrophages during pro-inflammatory response. We found that lactic acid serves as a primary fuel source to promote histone H3K27 acetylation, which allows the expression of immunosuppressive gene program including Nr4a1. Consequently, macrophage pro-inflammatory function was transcriptionally repressed. Furthermore, the histone acetylation induced by lactic acid promotes a form of long-term immunosuppression ("trained immunosuppression"). Pre-exposure to lactic acid induces lipopolysaccharide tolerance. These findings thus indicate that lactic acid sensing and its effect on chromatin remodeling in macrophages represent a key homeostatic mechanism that can provide a tolerogenic tissue microenvironment.


Subject(s)
Histones , Lactic Acid , Acetylation , Gene Expression , Macrophages
15.
BMC Cancer ; 24(1): 100, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233798

ABSTRACT

BACKGROUND: Immunotherapy targeting PD-1/PD-L1 has revolutionized the treatment of extensive-stage small cell lung cancer (ES-SCLC). However, clinical trials suggest differential efficacy of anti-PD-1 agents and anti-PD-L1 agents in first-line treatment of ES-SCLC. This retrospective multicenter study aimed to compare the efficacy and safety of anti-PD-1 agents versus anti-PD-L1 agents in first-line treatment of ES-SCLC in real-world practice. METHODS: Patients with pathologically or cytologically confirmed ES-SCLC treated with platinum plus etoposide combined with anti-PD-1 or PD-L1 agents as first-line treatment in different centers of PLA General Hospital between January 2017 and October 2021 were included for this study. Survival outcomes and safety were compared between patients receiving anti-PD-1 and PD-L1 agents. RESULTS: Of the total 154 included patients, 68 received anti-PD-1 agents plus chemotherapy (PD-1 group), and 86 received anti-PD-L1 agents plus chemotherapy (PD-L1 group). Progression-free survival (PFS) and overall survival (OS) in the entire cohort were 7.6 months (95% confidence interval [CI]: 6.5-8.2 months) and 17.4 months (95% CI: 15.3-19.3 months), respectively. Median PFS and OS were comparable between the PD-1 group and PD-L1 group (PFS: 7.6 months vs. 8.3 months, HR = 1.13, 95% CI: 0.79-1.62, p = 0.415; OS: 26.9 months vs. 25.6 months, HR = 0.96, 95% CI: 0.63-1.47, p = 0.859. The objective response rate and disease control rate were comparable between the two groups: 79.4% vs. 79.1% and 92.6% vs. 94.2%, respectively. The 6-month, 12-month, and 18-month PFS and OS rates were slightly higher in the PD-L1 group than in the PD-1 group, while the 24-month PFS rate was slightly higher in the PD-1 group than in the PD-L1 group. Stratified analysis showed that locoregional thoracic radiotherapy and normal lactate dehydrogenase level were independent predictors of better OS in ES-SCLC patients treated with first-line chemotherapy plus ICI. Adverse events were not significantly different between the two groups. CONCLUSIONS: Anti-PD-1 agents and anti-PD-L1 agents combined with chemotherapy as first-line treatment for ES-SCLC are comparably effective and well tolerated.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , B7-H1 Antigen , Immune Checkpoint Inhibitors/adverse effects , Lung Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , Retrospective Studies , Small Cell Lung Carcinoma/drug therapy
16.
ACS Omega ; 9(3): 3635-3641, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284056

ABSTRACT

During urethral catheterization, sliding friction can cause discomfort and even hemorrhaging. In this report, we use a lubricant-impregnated polydimethylsiloxane coating to reduce the sliding friction of a catheter. Using a pig urethra attached to a microforce testing system, we found that a lubricant-impregnated catheter reduces the sliding friction during insertion by more than a factor of two. This suggests that slippery, lubricant-impregnated surfaces have the potential to enhance patient comfort and safety during catheterization.

17.
Angew Chem Int Ed Engl ; 63(9): e202313640, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38193587

ABSTRACT

D-peptide ligands can be screened for therapeutic potency and enzymatic stability using synthetic mirror-image proteins (D-proteins), but efficient acquisition of these D-proteins can be hampered by the need to accomplish their in vitro folding, which often requires the formation of correctly linked disulfide bonds. Here, we report the finding that temporary installation of natural O-linked-ß-N-acetyl-D-glucosamine (O-GlcNAc) groups onto selected D-serine or D-threonine residues of the synthetic disulfide-bonded D-proteins can facilitate their folding in vitro, and that the natural glycosyl groups can be completely removed from the folded D-proteins to afford the desired chirally inverted D-protein targets using naturally occurring O-GlcNAcase. This approach enabled the efficient chemical syntheses of several important but difficult-to-fold D-proteins incorporating disulfide bonds including the mirror-image tumor necrosis factor alpha (D-TNFα) homotrimer and the mirror-image receptor-binding domain of the Omicron spike protein (D-RBD). Our work establishes the use of O-GlcNAc to facilitate D-protein synthesis and folding and proves that D-proteins bearing O-GlcNAc can be good substrates for naturally occurring O-GlcNAcase.


Subject(s)
Acetylglucosaminidase , Proteins , Peptides , Polysaccharides , Glucosamine
18.
Int J Biol Sci ; 20(2): 621-642, 2024.
Article in English | MEDLINE | ID: mdl-38169638

ABSTRACT

Immune checkpoint inhibitors (ICIs) have generated considerable excitement as a novel class of immunotherapeutic agents due to their remarkable efficacy in treating various types of cancer. However, the widespread use of ICIs has brought about a number of safety concerns, especially the development of immune-related adverse events (irAEs). These serious complications could result in treatment discontinuation and even life-threatening consequences, making it critical to identify high-risk groups and predictive markers of irAEs before initiating therapy. To this end, the current article examines several potential predictive markers of irAEs in important organs affected by ICIs. While retrospective studies have yielded some promising results, limitations such as small sample sizes, variable patient populations, and specific cancer types and ICIs studied make it difficult to generalize the findings. Therefore, prospective cohort studies and real-world investigations are needed to validate the potential of different biomarkers in predicting irAEs risk. Overall, identifying predictive markers of irAEs is a crucial step towards improving patient safety and enhancing the management of irAEs. With ongoing research efforts, it is hoped that more accurate and reliable biomarkers will be identified and incorporated into clinical practice to guide treatment decisions and prevent the development of irAEs in susceptible patients.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Retrospective Studies , Prospective Studies , Neoplasms/drug therapy , Biomarkers
19.
Int Urol Nephrol ; 56(1): 275-282, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37336802

ABSTRACT

PURPOSE: The relationship between serum phosphorus and immunoglobulin A (IgA) nephropathy progression remains uncertain, especially normal-range serum phosphorus. Therefore, we herein examined the relationship between the normal-range serum phosphorus and the progression of IgA nephropathy. METHODS: One hundred sixty-two patients with primary IgA nephropathy were divided into three groups according to tertiles of baseline serum phosphorus (first tertile: 0.73-1.04 mmol/L; second tertile: 1.04-1.21 mmol/L; third tertile: 1.21-1.60 mmol/L). Estimated glomerular filtration rate (eGFR) was calculated using the chronic kidney disease epidemiology collaboration. The composite outcome was defined as a decrease of at least 50% in eGFR from baseline or end-stage kidney disease (ESKD). The association of serum phosphorus with IgA nephropathy progression was estimated using Cox proportional hazards models, adjusting for potential confounders. RESULTS: During a median 16 month follow-up period, 15 patients reached a composite outcome. In the crude Cox proportional hazard model, baseline serum phosphorus as a continuous variable was associated with increased risk for adverse renal outcomes [hazard ratio (HR) = 63.510, 95% confidence interval (CI) = 3.953-1020.284, P = 0.003], and the high tertile of serum phosphorus group had an increased risk of the composite outcome by using the low tertile group as the reference (HR = 11.895, 95% CI = 1.522-92.993, P = 0.018). After adjustment for traditional risk factors, the high tertile of serum phosphorus group was significantly related to IgA nephropathy progression compared with the low tertile group (HR = 9.424, 95% CI = 1.019-87.165, P = 0.048). CONCLUSIONS: Relatively higher serum phosphorus levels within the normal range were significantly associated with the progression of IgA nephropathy.


Subject(s)
Glomerulonephritis, IGA , Kidney Failure, Chronic , Humans , Glomerulonephritis, IGA/complications , Retrospective Studies , Disease Progression , Kidney , Kidney Failure, Chronic/complications , Glomerular Filtration Rate , Phosphorus
20.
Cancer Med ; 13(10): e6817, 2024 May.
Article in English | MEDLINE | ID: mdl-38112031

ABSTRACT

Circulating tumor DNA (ctDNA) has been widely used as a minimally invasive biomarker in clinical routine. However, a number of factors such as panel design, sample quality, patients' disease stages are known to influence ctDNA detection sensitivity. In this study, we systematically evaluated common factors associated with the variability of ctDNA detection in plasma and investigated ctDNA abundance in bronchoalveolar lavage (BAL). Whole exome profiling was conducted on 61 tumor tissue samples to identify tumor-specific variants, which were then used to design personalized assay MarRyDa® for ctDNA detection. DNA extracted from BAL fluid and plasma were genotyped using MarRyDa® platform. Our analysis showed that histological subtypes and disease stages had significant differences in ctDNA detection rate. Furthermore, we found that DNA purified from BAL supernatants contains the highest levels of ctDNA compared with BAL precipitates and plasma; therefore, utilizing BAL supernatants for tumor detection might provide additional benefits. Finally, we demonstrated that tumor cellularity played significant roles in the design of personalized ctDNA panel which eventually impacts ctDNA detection sensitivity. We suggest setting a flexible criteria for sample quality control and utilization of BAL might benefit more patients in clinics.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Lung Neoplasms , Humans , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Lung Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Female , Bronchoalveolar Lavage Fluid/chemistry , Male , Precision Medicine/methods , Neoplasm Staging , Early Detection of Cancer/methods , Middle Aged , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...