Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Biosens Bioelectron ; 258: 116335, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38710144

The detection of antibiotics is crucial for safeguarding the environment, ensuring food safety, and promoting human health. However, developing a rapid, convenient, low-cost, and sensitive method for antibiotic detection presents significant challenges. Herein, an aptamer-free biosensor was successfully constructed using upconversion nanoparticles (UCNPs) coated with silk fibroin (SF), based on Förster resonance energy transfer (FRET) and the charge-transfer effect, for detecting roxithromycin (RXM). A synergistic FRET efficiency was achieved by utilizing alizarin red and RXM complexes as energy acceptors, with UCNP as the energy donor, and immobilizing an ultrathin SF protein corona within 10 nm. The biosensor detects RXM in deionized water with high sensitivity primarily through monolayer adsorption, with a detection range of 1.0 nM-141.6 nM and a detection limit as low as 0.68 nM. The performance of this biosensor was compared with the ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for detecting antibiotics in river water separately and a strong correlation between the two methods was observed. The biosensor exhibited long-term stability in aqueous solutions (up to 60 d) with no attenuation of fluorescence intensity. Furthermore, the biosensor's applicability extended to the highly sensitive detection of other antibiotics, such as azithromycin. This study introduces a low-cost, eco-friendly, and highly sensitive method for antibiotic detection, with broad potential for future applications in environmental, healthcare, and food-related fields.


Anti-Bacterial Agents , Biosensing Techniques , Fluorescence Resonance Energy Transfer , Limit of Detection , Nanoparticles , Biosensing Techniques/methods , Anti-Bacterial Agents/analysis , Nanoparticles/chemistry , Fluorescence Resonance Energy Transfer/methods , Roxithromycin/analysis , Roxithromycin/chemistry , Humans , Water Pollutants, Chemical/analysis , Fibroins/chemistry
2.
J Nanobiotechnology ; 22(1): 111, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38486273

Brain damage is a common tissue damage caused by trauma or diseases, which can be life-threatening. Stem cell implantation is an emerging strategy treating brain damage. The stem cell is commonly embedded in a matrix material for implantation, which protects stem cell and induces cell differentiation. Cell differentiation induction by this material is decisive in the effectiveness of this treatment strategy. In this work, we present an injectable fibroin/MXene conductive hydrogel as stem cell carrier, which further enables in-vivo electrical stimulation upon stem cells implanted into damaged brain tissue. Cell differentiation characterization of stem cell showed high effectiveness of electrical stimulation in this system, which is comparable to pure conductive membrane. Axon growth density of the newly differentiated neurons increased by 290% and axon length by 320%. In addition, unfavored astrocyte differentiation is minimized. The therapeutic effect of this system is proved through traumatic brain injury model on rats. Combined with in vivo electrical stimulation, cavities formation is reduced after traumatic brain injury, and rat motor function recovery is significantly promoted.


Bombyx , Brain Injuries, Traumatic , Fibroins , Mesenchymal Stem Cells , Neural Stem Cells , Nitrites , Transition Elements , Rats , Animals , Fibroins/metabolism , Fibroins/pharmacology , Bombyx/metabolism , Hydrogels/pharmacology , Neurons/metabolism , Brain/metabolism , Brain Injuries, Traumatic/metabolism
3.
ACS Appl Mater Interfaces ; 16(13): 15798-15808, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38507684

Sunscreens play a crucial role in protecting the skin from ultraviolet (UV) damage. However, present commercial sunscreens have a tendency to generate free radicals in the UV window, resulting in serious inflammatory responses and health problems. In this study, we demonstrate that silk fibroin microspheres (SFMPs) assembled from regenerated silk fibroin (SF) could scavenge free radicals while preventing UV irradiation and thus present a promising sunscreen. The SFMP reflected more UV light than SF and presented a higher stability than that of organic commercial sunscreens. In vitro analysis proved that SFMP could more efficiently scavenge the hydroxy radical and reduce the intracellular reactive oxygen than titanium dioxide (TiO2). In vivo experiments exhibited that SFMP provided stronger skin protection against UV irradiation than commercial sunscreens and TiO2. Furthermore, SFMP treatment significantly inhibited the skin inflammatory response. This work suggests that the SFMP has great potential to be developed into a biosafe sunscreen.


Bombyx , Fibroins , Animals , Fibroins/pharmacology , Sunscreening Agents/pharmacology , Microspheres , Free Radicals , Silk
4.
Int J Biol Macromol ; 263(Pt 2): 130373, 2024 Apr.
Article En | MEDLINE | ID: mdl-38395280

The integration of liquid metal (LM) and regenerated silk fibroin (RSF) hydrogel holds great potential for achieving effective antibacterial wound treatment through the LM photothermal effect. However, the challenge of LM's uncontrollable shape-deformability hinders its stable application. To address this, we propose a straightforward and environmentally-friendly ice-bath ultrasonic treatment method to fabricate stable RSF-coated eutectic gallium indium (EGaIn) nanoparticles (RSF@EGaIn NPs). Additionally, a double-crosslinked hydrogel (RSF-P-EGaIn) is prepared by incorporating poly N-isopropyl acrylamide (PNIPAAm) and RSF@EGaIn NPs, leading to improved mechanical properties and temperature sensitivity. Our findings reveal that RSF@EGaIn NPs exhibit excellent stability, and the use of near-infrared (NIR) irradiation enhances the antibacterial behavior of RSF-P-EGaIn hydrogel in vivo. In fact, in vivo testing demonstrates that wounds treated with RSF-P-EGaIn hydrogel under NIR irradiation completely healed within 14 days post-trauma infection, with the formation of new skin and hair. Histological examination further indicates that RSF-P-EGaIn hydrogel promoted epithelialization and well-organized collagen deposition in the dermis. These promising results lay a solid foundation for the future development of drug release systems based on photothermal-responsive hydrogels utilizing RSF-P-EGaIn.


Anti-Infective Agents , Fibroins , Metal Nanoparticles , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology
5.
ChemSusChem ; 17(11): e202301549, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38298106

The improper and inadequate treatment of industrial, agricultural, and household wastewater exerts substantial pressure on the existing ecosystem and poses a serious threat to the health of both humans and animals. To address these issues, different types of materials have been employed to eradicate detrimental pollutants from wastewater and facilitate the reuse of water resources. Nevertheless, owing to the challenges associated with the degradation of these traditional materials post-use and their incompatibility with the environment, natural biopolymers have garnered considerable interest. Silk protein, as a biomacromolecule, exhibits advantageous characteristics including environmental friendliness, low carbon emissions, biodegradability, sustainability, and biocompatibility. Considering recent research findings, this comprehensive review outlines the structure and properties of silk proteins and offers a detailed overview of the manufacturing techniques employed in the production of silk-based materials (SBMs) spanning different forms. Furthermore, it conducts an in-depth analysis of the state-of-the-art SBMs for water treatment purposes, encompassing adsorption, catalysis, water disinfection, desalination, and biosensing. The review highlights the potential of SBMs in addressing the challenges of wastewater treatment and provides valuable insights into prospective avenues for further research.


Silk , Water Purification , Water Purification/methods , Silk/chemistry , Green Chemistry Technology/methods , Carbon/chemistry , Wastewater/chemistry
6.
Small ; : e2309364, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38225691

Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their accessibility, eco-friendliness, and robust regenerative attributes. A major challenge of moisture-responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi-directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture-responsive layer with a moisture-inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi-directional bending deformation (-4.06 ± 0.09 to 10.44 ± 0.00 cm-1 ) and ultrafast bending rates (7.06 cm-1  s-1 ). The high deformation rate is achieved by incorporating the SFR into the moisture-responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.

7.
Biomater Sci ; 11(23): 7663-7677, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37855269

Biophysical factors are essential in cell survival and behaviors, but constructing a suitable 3D microenvironment for the recruitment of stem cells and exerting their physiological functions remain a daunting challenge. Here, we present a novel silk fibroin (SF)-based fabrication strategy to develop hierarchical microchannel scaffolds for biomimetic nerve microenvironments in vitro. We first modulated the formation of SF nanofibers (SFNFs) that mimic the nanostructures of the native extracellular matrix (ECM) by using graphene oxide (GO) nanosheets as templates. Then, SFNF-GO systems were shaped into 3D porous scaffolds with aligned micro-lamellar structures by freeze-casting. The interconnected microchannels successfully induced cell infiltration and migration to the SFNF-GO scaffolds' interior. Meanwhile, the nano-fibrillar structures and the GO component significantly induced neural stem cells (NSCs) to differentiate into neurons within a short timeframe of 14 d. Importantly, these 3D hierarchical scaffolds induced a mild inflammatory response, extensive cell recruitment, and effective stimulation of NSC neuronal differentiation when implanted in vivo. Therefore, these SFNF-GO lamellar scaffolds with distinctive nano-/micro-topographies hold promise in the fields of nerve injury repair and regenerative medicine.


Fibroins , Neural Stem Cells , Tissue Scaffolds/chemistry , Neural Stem Cells/metabolism , Fibroins/chemistry , Neurons , Cell Differentiation , Tissue Engineering
8.
ACS Appl Mater Interfaces ; 15(28): 33191-33206, 2023 Jul 19.
Article En | MEDLINE | ID: mdl-37417928

Biomineralization refers to the process through which minerals nucleate in a structured manner to form specific crystal structures by the regulating of biomacromolecules. Biomineralization occurs in bones and teeth within the human body, where collagen acts as a template for the nucleation of hydroxyapatite (HA) crystals. Similar to collagen, silk proteins spun by silkworms can also serve as templates for the nucleation and growth of inorganic substances at interfaces. By enabling the binding of silk proteins to inorganic minerals, the process of biomineralization enhances the properties of silk-based materials and broadens their potential applications, rendering them highly promising for use in biomedical applications. In recent years, the development of biomineralized materials using silk proteins has garnered considerable attention in the biomedical field. This comprehensive review outlines the mechanism of biomineral formation mediated by silk proteins, as well as various biomineralization methods used to prepare silk-based biomineralized materials (SBBMs). Additionally, we discuss the physicochemical properties and biological functions of SBBMs, and their potential applications in various fields such as bioimaging, cancer therapy, antibacterial treatments, tissue engineering, and drug delivery. In conclusion, this review highlights the significant role that SBBMs can play in the biomedical field.


Biomineralization , Silk , Humans , Silk/chemistry , Bone and Bones , Minerals/chemistry , Collagen
9.
RSC Adv ; 13(29): 20229-20234, 2023 Jun 29.
Article En | MEDLINE | ID: mdl-37416905

Opportunistic foodborne pathogens such as Staphylococcus aureus (S. aureus) can cause a wide variety of threats to public health. There is an urgent clinical need for a fast, simple, low-cost, and sensitive method. Here, we designed a fluorescence-based aptamer biosensor (aptasensor) for S. aureus detection using core-shell structured upconversion nanoparticles (CS-UCNPs) as a beacon. A S. aureus-specific aptamer was modified on the surface of CS-UCNPs for binding pathogens. The S. aureus bound to CS-UCNPs can then be isolated from the detection system by simple low-speed centrifugation. Thus, an aptasensor was successfully established for the detection of S. aureus. The fluorescence intensity of CS-UCNPs correlated with the concentration of S. aureus within the range of 6.36 × 102 to 6.36 × 108 CFU mL-1, resulting in the detected limit of S. aureus being 60 CFU mL-1. The aptasensor performed well in real food samples (milk) with a detection limit of 146 CFU mL-1 for S. aureus. Furthermore, we applied our aptasensor in chicken muscles for S. aureus detection, and compared it with the plate count gold standard method. There was no significant difference between our aptasensor and the plate count method within the detected limit, while the time for the aptasensor (0.58 h) was shorter than that of the plate count method (3-4 d). Therefore, we succeeded in the design of a simple, sensitive and fast CS-UCNPs aptasensor for S. aureus detection. This aptasensor system would have the potential for the detection of a wide range of bacterial species by switching the corresponding aptamer.

10.
Biomolecules ; 13(6)2023 06 14.
Article En | MEDLINE | ID: mdl-37371570

Cardiac tissue engineering is a promising strategy for the treatment of myocardial damage. Mesenchymal stem cells (MSCs) are extensively used in tissue engineering. However, transformation of MSCs into cardiac myocytes is still a challenge. Furthermore, weak adhesion of MSCs to substrates often results in poor cell viability. Here, we designed a composite matrix based on silk fibroin (SF) and graphene oxide (GO) for improving the cell adhesion and directing the differentiation of MSCs into cardiac myocytes. Specifically, patterned SF films were first produced by soft lithographic. After being treated by air plasma, GO nanosheets could be successfully coated on the patterned SF films to construct the desired matrix (P-GSF). The resultant P-GSF films presented a nano-topographic surface characterized by linear grooves interlaced with GO ridges. The P-GSF films exhibited high protein absorption and suitable mechanical strength. Furthermore, the P-GSF films accelerated the early cell adhesion and directed the growth orientation of MSCs. RT-PCR results and immunofluorescence imaging demonstrated that the P-GSF films significantly improved the cardiomyogenic differentiation of MSCs. This work indicates that patterned SF films coated with GO are promising matrix in the field of myocardial repair tissue engineering.


Fibroins , Mesenchymal Stem Cells , Humans , Fibroins/chemistry , Cell Adhesion , Tissue Engineering/methods , Cell Differentiation , Cell Proliferation
11.
ACS Appl Mater Interfaces ; 15(6): 7673-7685, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36735224

Peptides can introduce new functions to biomaterials but their immobilization usually relies on inefficient physical adsorption or tedious chemical conjugation. Using the Bombyx mori silk fibroin (SF) membrane (SFm) as a model biomaterial, here, we demonstrate a universal strategy for discovering new peptides that can "stick" to a biomaterial to functionalize it. Specifically, two peptide motifs, one screened by phage display biopanning for binding to the biomaterial (i.e., SF) and another derived from an osteogenic growth factor (i.e., bone morphogenetic protein-2), are fused into a new chimeric peptide that can bind to SFm for more efficient osteogenesis. Theoretical simulations and experimental assays confirm that the chimeric peptide binds to SF with high affinity, facilely achieving its immobilization onto SFm. The peptide enables SFm to effectively induce osteogenic differentiation of human mesenchymal stem cells (MSCs) even without other osteogenic inducers and efficiently stimulate bone regeneration in a subcutaneous rat model in 8 weeks, even without MSC seeding, while not causing inflammatory responses. Since biomaterial-binding peptides can be readily screened using phage display and functional peptides can be generated from growth factors, our work suggests a universal strategy for combining them to seek new peptides for binding and functionalizing biomaterials.


Fibroins , Mesenchymal Stem Cells , Humans , Rats , Animals , Osteogenesis , Biocompatible Materials/pharmacology , Fibroins/pharmacology , Peptides/pharmacology , Cell Differentiation , Silk/pharmacology , Tissue Scaffolds
12.
ACS Appl Mater Interfaces ; 14(38): 42950-42962, 2022 Sep 28.
Article En | MEDLINE | ID: mdl-36112417

Synthetic or natural materials have been used as vaccines in cancer immunotherapy. However, using them as vaccines necessitates multiple injections or surgical implantations. To tackle such daunting challenges, we develop an injectable macroporous Bombyx mori (B. mori) silk fibroin (SF) microsphere loaded with antigens and immune adjuvants to suppress established tumors with only a single injection. SF microspheres can serve as a scaffold by injection and avoid surgical injury as seen in traditional scaffold vaccines. The macroporous structure of the vaccine facilitates the recruitment of immune cells and promotes the activation of dendritic cells (DCs), resulting in a favorable immune microenvironment that further induces strong humoral and cellular immunity. We have also modified the vaccine into a booster version by simply allowing the antigens to be adsorbed onto the SF microspheres. The booster vaccine highly efficiently suppresses tumor growth by improving the cytotoxic T lymphocyte (CTL) response. In general, these results demonstrate that the macroporous SF microspheres can serve as a facile platform for tumor vaccine therapy in the future. Since the SF microspheres are also potential scaffolds for tissue regeneration, their use as a vaccine platform will enable their applications in eradicating tumors while regenerating healthy tissue to heal the tumor-site cavity.


Bombyx , Fibroins , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Animals , Fibroins/chemistry , Immunotherapy , Microspheres , Silk/chemistry
13.
J Mater Chem B ; 9(47): 9764-9769, 2021 12 08.
Article En | MEDLINE | ID: mdl-34806096

Although silk proteins are considered promising in building a scaffold for tissue engineering, one of the silk proteins, Bombyx mori silk sericin (BS), has limited processability in producing nanofibrous scaffolds because its surface charge anisotropy promotes gelation instead. To overcome this daunting challenge, we developed a mild and simple procedure for assembling BS into nanofibers and nanofibrous scaffolds. Briefly, arginine was added to the aqueous BS solution to reduce the negative charge of BS, thereby inducing BS to self-assemble into nanofibers in the solution. Circular dichroism (CD) and Fourier transform infrared (FT-IR) spectra showed that arginine promoted the formation of ß-sheet conformation in BS and increased its thermal stability. Furthermore, the arginine-induced BS nanofiber solution could be casted into scaffolds made of abundant network-like nanofibrous structures. The BS scaffolds promoted cell adhesion and growth and stimulated osteogenic differentiation of the bone marrow mesenchymal stem cells (BMSCs) in the absence of differentiation inducers in culture media. Our study presents a new strategy for assembling proteins into osteogenic nanofibrous scaffolds for inducing stem cell differentiation in regenerative medicine.


Arginine/chemistry , Cell Differentiation/drug effects , Mesenchymal Stem Cells/drug effects , Nanofibers/chemistry , Sericins/pharmacology , Tissue Scaffolds/chemistry , Animals , Bombyx/chemistry , Membranes, Artificial , Protein Conformation, beta-Strand/drug effects , Protein Multimerization/drug effects , Sericins/chemistry
14.
Nat Commun ; 12(1): 3711, 2021 06 17.
Article En | MEDLINE | ID: mdl-34140492

Silk fibre mechanical properties are attributed to the development of a multi-scale hierarchical structure during spinning. By careful ex vivo processing of a B. mori silkworm silk solution we arrest the spinning process, freezing-in mesoscale structures corresponding to three distinctive structure development stages; gelation, fibrilization and the consolidation phase identified in this work, a process highlighted by the emergence and extinction of 'water pockets'. These transient water pockets are a manifestation of the interplay between protein dehydration, phase separation and nanofibril assembly, with their removal due to nanofibril coalescence during consolidation. We modeled and validated how post-draw improves mechanical properties and refines a silk's hierarchical structure as a result of consolidation. These insights enable a better understanding of the sequence of events that occur during spinning, ultimately leading us to propose a robust definition of when a silkworm silk is actually 'spun'.


Bombyx/chemistry , Bombyx/metabolism , Fibroins/chemistry , Fibroins/metabolism , Silk/chemistry , Silk/metabolism , Animals , Fibroins/ultrastructure , Microscopy, Electron, Scanning , Porosity , Protein Conformation, beta-Strand , Spectrum Analysis, Raman , Water/chemistry
15.
Adv Healthc Mater ; 10(8): e2001695, 2021 04.
Article En | MEDLINE | ID: mdl-33720549

The use of biomacromolecules as templates to control the nucleation and growth of hydroxyapatite crystals to prepare bioactive materials is a valuable approach in bone tissue engineering. Here, an artificial periosteum is prepared by biomineralizing Antheraea pernyi fibroin (AF) membrane with prenucleated nanoclusters, which can promote the osteogenic differentiation of mesenchymal stem cells (MSCs) and induce the formation of bone matrix protein in vivo. To achieve this, a biologically inspired prenucleated calcium and phosphorus nanocluster mineralization system is designed to nucleate and generate hydroxyapatite crystals on the surface of the AF membrane. This biomineralization process provides AF membranes with improved elastic modulus and tensile strength. Subsequently, cell viability assay, hemolysis test, and H&E staining show that the mineralized AF (MAF) membranes has good cytocompatibility, hemocompatibility, and histocompatibility in vitro and in vivo. Additionally, the MAF membranes significantly promote osteogenic differentiation of MSCs in the absence of osteogenic inducer in vitro. Experiments in vivo demonstrate that bone-related matrix proteins are highly expressed in MAF groups with or without MSCs seeded. Therefore, the use of bioinspired prenucleated nanoclusters to prepare artificial periosteum based on biomineralized AF membrane is a promising strategy in the field of bone tissue engineering.


Fibroins , Moths , Animals , Biomineralization , Calcium , Cell Differentiation , Osteogenesis , Periosteum , Phosphorus , Tissue Engineering , Tissue Scaffolds
16.
Biomater Sci ; 7(6): 2326-2334, 2019 May 28.
Article En | MEDLINE | ID: mdl-30907916

Introducing hydroxylapatite (HAp) into biomolecular materials is a promising approach to improve their bone regenerative capability. Thus a facile method needs to be developed to achieve this goal. Here we show that a simple air-plasma treatment of silk fibroin (SF) films for 5 min induced the formation of bone-like plate-shaped nano-HAp (nHAp) on their surface and the resultant material efficiently enhanced in vivo osteogenesis. The air-plasma-treated SF films (termed A-SF) presented surface nano-pillars and enhanced hydrophilicity compared to the pristine SF films (termed SF), making the A-SF and SF films induce the formation of plate-shaped/more-crystalline and needle-like/less-crystalline nHAp, respectively. The mineralized A-SF and SF films (termed A-SF-nHAp and SF-nHAp, respectively) and their non-mineralized counterparts were seeded with rat mesenchymal stem cells and subcutaneously implanted into the rat models. The A-SF-nHAp and A-SF films exhibited more efficient bone formation than the SF-nHAp and SF films in 4 weeks due to their unique nanotopography, with the A-SF-nHAp films being more efficient than the A-SF films. This work shows that a combination of the air-plasma treatment and the subsequent nHAp mineralization most efficiently promotes bone formation. Our plasma-based method is an attractive approach to enhance the bone regenerative capacity of protein-based biomaterials.


Air , Biocompatible Materials/pharmacology , Durapatite/chemistry , Fibroins/chemistry , Nanostructures/chemistry , Osteogenesis/drug effects , Plasma Gases/chemistry , Animals , Biocompatible Materials/chemistry , Cell Differentiation/drug effects , Cell Survival/drug effects , Hydrophobic and Hydrophilic Interactions , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Rats , Surface Properties
17.
ACS Appl Mater Interfaces ; 10(38): 31988-31997, 2018 Sep 26.
Article En | MEDLINE | ID: mdl-30204402

Bombyx mori silk fibroin (SF) is a promising natural biocompatible protein. However, its interaction with graphene oxide (GO) has never been studied and the resultant SF/GO matrix has not been used to direct stem cell fate. Herein, we found out that mixing SF molecules and GO nanosheets in an aqueous solution can trigger the assembly of SF nanoparticles into oriented nanofibrils due to the guidance of GO nanosheets, forming SF/GO films with unique nanotopographies and improved modulus upon the removal of the solvent. When GO mass percentage in the SF/GO films is 2 and 10%, the SF assemblies are necklace-like nanofibrils (assembled from loosely linked SF nanoparticles) and solid nanofibrils (assembled from densely linked SF nanoparticles) in the resultant films, termed SG2 and SG10, respectively. GO nanosheets guided the SF assembly into nanofibrils by triggering the structural change of SF molecules from random coils to ß-sheets, as confirmed by Fourier transform infrared spectroscopy and circular dichroism measurements. Furthermore, oxidative groups in the GO nanosheets were reduced by the reducing groups in SF during the nanofibril formation according to X-ray photoelectron spectroscopy and Raman spectroscopy. The reduction of the oxidative groups in GO by SF was further verified by the good cell viability on the SF/GO films. The unique nanotopographies of the SF/GO films were found to accelerate the early cell adhesion and induce the osteogenic differentiation of human mesenchymal stem cells (MSCs) even in the absence of additional inducers in the medium. More importantly, SG10 presents a stronger capability in promoting early MSC adhesion by promoting F-actin assembly, increasing cell spreading area, and inducing the osteogenic differentiation of the MSCs by the unique SF/GO nanofibrous matrix. To the best of our knowledge, it is the first report that the SF/GO substrates can induce the osteogenic differentiation of MSCs in the absence of osteogenic differentiation medium. Therefore, SF/GO composite materials would have a potential application in the field of bone tissue engineering.


Cell Differentiation/drug effects , Graphite/pharmacology , Mesenchymal Stem Cells/drug effects , Nanostructures/chemistry , Osteogenesis/drug effects , Tissue Engineering/methods , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Graphite/chemistry , Humans , Mesenchymal Stem Cells/cytology
18.
J Mater Chem B ; 5(21): 3945-3954, 2017 Jun 07.
Article En | MEDLINE | ID: mdl-29152304

Silk sericin, a water-soluble glue-like protein, is extensively used as a biomaterial due to its biocompatibility, hydrophilicity, biodegradability, and adequate resource. In addition, hydroxyapatite-based drug carriers are functionally efficient for drug or gene delivery due to their biodegradability, biocompatibility and easy metabolism in vivo. Herein, for the first time, this study used sericin, from a wild silkworm called Antheraea pernyi (A. pernyi), as a template to nucleate hydroxylapatite (HAp) nano-needles and form porous sericin-HAp nanocomposite microspheres as an anticancer drug carrier. Specifically, A. pernyi sericin (AS) was incubated in 1.5× simulated body fluid to induce the formation of porous AS/HAp microspheres in situ. Doxorubicin (DOX) loading and release assays proved that the microspheres exhibited pH-dependent controlled and sustained release of DOX. In particular, the microspheres can selectively release DOX at a higher rate at the acidic conditions typical for tumor microenvironment than at the physiological conditions typical for normal tissues, which will potentially reduce the side effect of the cancer drugs in normal tissues. Cancer cell toxicity assay, cancer cell imaging and intracellular DOX distribution assay provided further evidence to support the pH-dependent controlled and sustained release of DOX to cancer cells from the microspheres. Our work has demonstrated a biomimetic strategy for the design and synthesis of silk protein-based drug carriers that can be potentially employed in drug delivery and regenerative medicine.

19.
Adv Funct Mater ; 27(44)2017 Nov 24.
Article En | MEDLINE | ID: mdl-29657571

Little is known about the role of biocompatible protein nanoridges in directing stem cell fate and tissue regeneration due to the difficulty in forming protein nanoridges. Here an ice-templating approach is proposed to produce semi-parallel pure silk protein nanoridges. The key to this approach is that water droplets formed in the protein films are frozen into ice crystals (removed later by sublimation), pushing the surrounding protein molecules to be assembled into nanoridges. Unlike the flat protein films, the unique protein nanoridges can induce the differentiation of human mesenchymal stem cells (MSCs) into osteoblasts without any additional inducers, as well as the formation of bone tissue in a subcutaneous rat model even when not seeded with MSCs. Moreover, the nanoridged films induce less inflammatory infiltration than the flat films in vivo. This work indicates that decorating biomaterials surfaces with protein nanoridges can enhance bone tissue formation in bone repair.

20.
PLoS One ; 11(7): e0159111, 2016.
Article En | MEDLINE | ID: mdl-27414647

Silk fibers have many inherent properties that are suitable for their use in biomaterials. In this study, the silk fibroin was genetically modified by including a Ca-binding sequence, [(AGSGAG)6ASEYDYDDDSDDDDEWD]2 from shell nacreous matrix protein. It can be produced as fibers by transgenic silkworm. The Ca-binding activity and mineralization of the transgenic silk fibroin were examined in vitro. The results showed that this transgenic silk fibroin had relatively higher Ca-binding activity than unmodified silk fibroin. The increased Ca-binding activity could promote the usage of silk fibroin as a biomaterial in the pharmaceutical industry. This study shows the possibility of using silk fibroin as a mineralization accelerating medical material by generating genetically modified transgenic silkworm.


Biocompatible Materials , Calcium/metabolism , Fibroins/metabolism , Silk/chemistry , Animals , Animals, Genetically Modified , Bombyx
...