Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 192: 106704, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761893

ABSTRACT

The indiscriminate use of antimicrobials has led to the emergence of resistant bacteria, especially pathogenic strains of Escherichia coli, which are associated with diseases in animals and humans. The aim of the present study was to characterize E. coli isolates in calves with regards to the presence of virulence genes and investigate the resistance of the isolates to different antimicrobials. Between 2021 and 2023, 456 fecal samples were collected from calves in the Pantanal and Cerrado biomes of the state of Mato Grosso do Sul, Brazil. All samples were subjected to microbiological analysis and disc diffusion antibiogram testing. The polymerase chain reaction method was used to detect virulence genes. Bacterial growth was found in 451 of the 456 samples and biochemically identified as Escherichia coli. All 451 isolates (100 %) exhibited some phenotypic resistance to antimicrobials and 67.62 % exhibited multidrug resistance. The frequency of multidrug-resistant isolates in the Cerrado biome was significantly higher than that in the Pantanal biome (p = 0.0001). In the Cerrado, the most common pathotype was Shiga toxin-producing Escherichia coli (STEC) (28 %), followed by toxigenic Escherichia coli (ETEC) (11 %), enterohemorrhagic Escherichia coli (EHEC) (8 %) and enteropathogenic Escherichia coli (EPEC) (2 %). In most cases, the concomitant occurrence of pathotypes was more common, the most frequent of which were ETEC + STEC (33 %), ETEC + EHEC (15 %) and ETEC + EPEC (3 %). The STEC pathotype (30 %) was also found more frequently in the Pantanal, followed by EHEC (12 %), ETEC (9 %) and EPEC (6 %). The STEC pathotype had a significantly higher frequency of multidrug resistance (p = 0.0486) compared to the other pathotypes identified. The frequency of resistance was lower in strains from the Pantanal biome compared to those from the Cerrado biome. Although some factors are discussed in this paper, it is necessary to clarify the reasons for this difference and the possible impacts of these findings on both animal and human health in the region.


Subject(s)
Anti-Bacterial Agents , Cattle Diseases , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Feces , Microbial Sensitivity Tests , Virulence Factors , Animals , Cattle , Brazil , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Feces/microbiology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , Virulence Factors/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/drug effects , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/isolation & purification , Enterohemorrhagic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/isolation & purification , Escherichia coli Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...