Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38969944

ABSTRACT

PURPOSE: We have previously reported that protracted Cyclooxygenase-2 (COX-2) activity in bone marrow-derived cells (BMDCs) infiltrating into biopsy wounds adjacent to the biopsy cavity of breast tumors in mice promotes M2-shift of macrophages and pro-metastatic changes in cancer cells, effects which were suppressed by oral administration of COX-2 inhibitors. Thus, local control of COX-2 activity in the biopsy wound may mitigate biopsy-induced pro-metastatic changes. METHODS: A combinatorial delivery system-thermosensitive biodegradable poly(lactic acid) hydrogel (PLA-gel) incorporating celecoxib-encapsulated poly(lactic-co-glycolic acid) nanoparticles (Cx-NP/PLA-gel)-was injected into the biopsy cavity of Py230 murine breast tumors to achieve local control of COX-2 activity in the wound stroma. RESULTS: A single intra-biopsy cavity injection of PLA-gel loaded with rhodamine-encapsulated nanoparticles (NPs) showed sustained local delivery of rhodamine preferentially to infiltrating BMDCs with minimal to no rhodamine uptake by the reticuloendothelial organs in mice. Moreover, significant reductions in M2-like macrophage density, cancer cell epithelial-to-mesenchymal transition, and blood vessel density were observed in response to a single intra-biopsy cavity injection of Cx-NP/PLA-gel compared to PLA-gel loaded with NPs containing no payload. Accordingly, intra-biopsy cavity injection of Cx-NP/PLA-gel led to significantly fewer metastatic cells in the lungs than control-treated mice. CONCLUSION: This study provides evidence for the feasibility of sustained, local delivery of payload preferential to BMDCs in the wound stroma adjacent to the biopsy cavity using a combinatorial delivery system to reduce localized inflammation and effectively mitigate breast cancer cell dissemination.

2.
Cell Rep Med ; 4(12): 101330, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38118415

ABSTRACT

Increased breast cancer (BC) mortality risk posed by delayed surgical resection of tumor after diagnosis is a growing concern, yet the underlying mechanisms remain unknown. Our cohort analyses of early-stage BC patients reveal the emergence of a significantly rising mortality risk when the biopsy-to-surgery interval was extended beyond 53 days. Additionally, histology of post-biopsy tumors shows prolonged retention of a metastasis-permissive wound stroma dominated by M2-like macrophages capable of promoting cancer cell epithelial-to-mesenchymal transition and angiogenesis. We show that needle biopsy promotes systemic dissemination of cancer cells through a mechanism of sustained activation of the COX-2/PGE2/EP2 feedforward loop, which favors M2 polarization and its associated pro-metastatic changes but are abrogated by oral treatment with COX-2 or EP2 inhibitors in estrogen-receptor-positive (ER+) syngeneic mouse tumor models. Therefore, we conclude that needle biopsy of ER+ BC provokes progressive pro-metastatic changes, which may explain the mortality risk posed by surgery delay after diagnosis.


Subject(s)
Breast Neoplasms , Humans , Animals , Mice , Female , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclooxygenase 2 , Biopsy, Needle
SELECTION OF CITATIONS
SEARCH DETAIL