Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 15(7): 478, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961086

ABSTRACT

A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.


Subject(s)
Neuroglia , Neurons , Humans , Animals , Neuroglia/metabolism , Neuroglia/cytology , Neurons/metabolism , Neurons/cytology , Mice , Adult , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Lineage , Hippocampus/cytology , Hippocampus/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Cells, Cultured
2.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063175

ABSTRACT

Type I interferon (IFN-I) signaling has been shown to be upregulated in systemic sclerosis (SSc). Dysregulated B-cell functions, including antigen presentation, as well as antibody and cytokine production, all of which may be affected by IFN-I signaling, play an important role in the pathogenesis of the disease. We investigated the IFN-I signature in 71 patients with the more severe form of the disease, diffuse cutaneous SSc (dcSSc), and 33 healthy controls (HCs). Activation via Toll-like receptors (TLRs) can influence the IFN-I signaling cascade; thus, we analyzed the effects of the TLR homologue CD180 ligation on the IFN-I signature in B cells. CD180 stimulation augmented the phosphorylation of signal transducer and activator of transcription 1 (STAT1) in dcSSc B cells (p = 0.0123). The expression of IFN-I receptor (IFNAR1) in non-switched memory B cells producing natural autoantibodies was elevated in dcSSc (p = 0.0109), which was enhanced following anti-CD180 antibody treatment (p = 0.0125). Autoantibodies to IFN-Is (IFN-alpha and omega) correlated (dcSSc p = 0.0003, HC p = 0.0192) and were present at similar levels in B cells from dcSSc and HC, suggesting their regulatory role as natural autoantibodies. It can be concluded that factors other than IFN-alpha may contribute to the elevated IFN-I signature of dcSSc B cells, and one possible candidate is B-cell activation via CD180.


Subject(s)
Antigens, CD , Autoantibodies , B-Lymphocytes , Interferon Type I , Humans , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Middle Aged , Female , Male , Autoantibodies/immunology , Antigens, CD/metabolism , Adult , Interferon Type I/metabolism , STAT1 Transcription Factor/metabolism , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , Scleroderma, Diffuse/immunology , Scleroderma, Diffuse/metabolism , Aged , Up-Regulation , Signal Transduction
3.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928303

ABSTRACT

We aimed to investigate the characteristics of serum metabolomics in aneurysmal subarachnoid hemorrhage patients (aSAH) with different 3-month outcomes (good = modified Rankin score: 0-3 vs. poor = mRS 4-6). We collected serum samples from 46 aSAH patients at 24 (D1) and 168 (D7) hours after injury for analysis by liquid chromatography-mass spectrometry. Ninety-six different metabolites were identified. Groups were compared using multivariate (orthogonal partial least squares discriminant analysis), univariate, and receiving operator characteristic (ROC) methods. We observed a marked decrease in serum homocysteine levels at the late phase (D7) compared to the early phase (D1). At both D1 and D7, mannose and sorbose levels were notably higher, alongside elevated levels of kynurenine (D1) and increased 2-hydroxybutyrate, methyl-galactoside, creatine, xanthosine, p-hydroxyphenylacetate, N-acetylalanine, and N-acetylmethionine (all D7) in the poor outcome group. Conversely, levels of guanidinoacetate (D7) and several amino acids (both D1 and D7) were significantly lower in patients with poor outcomes. Our results indicate significant changes in energy metabolism, shifting towards ketosis and alternative energy sources, both in the early and late phases, even with adequate enteral nutrition, particularly in patients with poor outcomes. The early activation of the kynurenine pathway may also play a role in this process.


Subject(s)
Metabolome , Metabolomics , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/blood , Subarachnoid Hemorrhage/metabolism , Male , Female , Middle Aged , Metabolomics/methods , Aged , Adult , Homocysteine/blood , Kynurenine/blood , Kynurenine/analogs & derivatives , Biomarkers/blood , Prognosis , Hydroxybutyrates
4.
Front Immunol ; 15: 1382424, 2024.
Article in English | MEDLINE | ID: mdl-38601161

ABSTRACT

During pregnancy, the maternal immune system must allow and support the growth of the developing placenta while maintaining the integrity of the mother's body. The trophoblast's unique HLA signature is a key factor in this physiological process. This study focuses on decidual γδT cell populations and examines their expression of receptors that bind to non-classical HLA molecules, HLA-E and HLA-G. We demonstrate that decidual γδT cell subsets, including Vδ1, Vδ2, and double-negative (DN) Vδ1-/Vδ2- cells express HLA-specific regulatory receptors, such as NKG2C, NKG2A, ILT2, and KIR2DL4, each with varying dominance. Furthermore, decidual γδT cells produce cytokines (G-CSF, FGF2) and cytotoxic mediators (Granulysin, IFN-γ), suggesting functions in placental growth and pathogen defense. However, these processes seem to be controlled by factors other than trophoblast-derived non-classical HLA molecules. These findings indicate that decidual γδT cells have the potential to actively contribute to the maintenance of healthy human pregnancy.


Subject(s)
Antineoplastic Agents , Placenta , Pregnancy , Humans , Female , Decidua , HLA-G Antigens/genetics , HLA-G Antigens/metabolism , Trophoblasts/metabolism , Cytokines/metabolism
5.
Geroscience ; 46(5): 5267-5286, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38668888

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has introduced the medical community to the phenomenon of long COVID, a condition characterized by persistent symptoms following the resolution of the acute phase of infection. Among the myriad of symptoms reported by long COVID sufferers, chronic fatigue, cognitive disturbances, and exercise intolerance are predominant, suggesting systemic alterations beyond the initial viral pathology. Emerging evidence has pointed to mitochondrial dysfunction as a potential underpinning mechanism contributing to the persistence and diversity of long COVID symptoms. This review aims to synthesize current findings related to mitochondrial dysfunction in long COVID, exploring its implications for cellular energy deficits, oxidative stress, immune dysregulation, metabolic disturbances, and endothelial dysfunction. Through a comprehensive analysis of the literature, we highlight the significance of mitochondrial health in the pathophysiology of long COVID, drawing parallels with similar clinical syndromes linked to post-infectious states in other diseases where mitochondrial impairment has been implicated. We discuss potential therapeutic strategies targeting mitochondrial function, including pharmacological interventions, lifestyle modifications, exercise, and dietary approaches, and emphasize the need for further research and collaborative efforts to advance our understanding and management of long COVID. This review underscores the critical role of mitochondrial dysfunction in long COVID and calls for a multidisciplinary approach to address the gaps in our knowledge and treatment options for those affected by this condition.


Subject(s)
COVID-19 , Mitochondria , Post-Acute COVID-19 Syndrome , Humans , COVID-19/complications , COVID-19/physiopathology , COVID-19/therapy , Mitochondria/metabolism , SARS-CoV-2 , Oxidative Stress/physiology , Mitochondrial Diseases/therapy , Mitochondrial Diseases/physiopathology
6.
Int J Mol Sci ; 25(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38542402

ABSTRACT

Cardiovascular (CV) morbidity and mortality have been associated with rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Natural autoantibodies (nAAb) are involved in innate immunity, as well as autoimmunity, inflammation, and atherosclerosis. There have not been any studies assessing the effects of biologics on nAAbs in RA and AS, also in relation to vascular pathophysiology. Fifty-three anti-TNF-treated RA and AS patients were included in a 12-month follow-up study. Anti-citrate synthase (CS) and anti-topoisomerase I fragment 4 (TOPO-F4) IgM and IgG levels were determined by ELISA. Ultrasonography was performed to assess brachial artery flow-mediated vasodilation (FMD), common carotid intima-media thickness (ccIMT), and arterial pulse-wave velocity (PWV). Other variables were also evaluated at baseline and 6 and 12 months after treatment initiation. Anti-TNF therapy improved FMD in RA and PWV in AS and stabilized ccIMT. TNF inhibition increased anti-CS IgM and IgG, and possibly also anti-TOPO-F4 IgG levels. Various correlation analyses revealed that nAAbs might be independently involved in autoimmunity as well as changes in inflammation and vascular pathology over time in biologic-treated patients (p < 0.05). We also found associations between anti-TOPO-F4 IgG and anti-Hsp60 IgG (p < 0.05). Baseline nAAb levels or nAAb level changes might determine changes in CRP, disease activity, FMD, PWV, and ccIMT over time (p < 0.05). The interplay between arthritis and inflammatory atherosclerosis, as well as the effects of anti-TNF biologics on these pathologies, might independently involve nAAbs.


Subject(s)
Arthritis, Rheumatoid , Atherosclerosis , Biological Products , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/drug therapy , Carotid Intima-Media Thickness , Autoantibodies , Tumor Necrosis Factor Inhibitors , Follow-Up Studies , Atherosclerosis/complications , Inflammation/complications , Immunoglobulin G , Immunoglobulin M
7.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338701

ABSTRACT

The function of natural autoantibodies (nAAbs) in maintaining immunological tolerance has been comprehensively explained; however, their function in pregnant patients dealing with autoimmune diseases has not been thoroughly investigated. As Hashimoto's thyroiditis (HT) is the predominant organ-specific autoimmune condition of women of childbearing age, this study's objective was to evaluate IgM and IgG nAAbs targeting mitochondrial citrate synthase (CS) and heat shock proteins (Hsp60 and Hsp70) in women diagnosed with HT who were pregnant (HTP). Serum samples collected from HTP and healthy pregnant (HP) women in the first and third trimesters were tested using in-house-developed enzyme-linked immunosorbent assays (ELISAs). Our findings indicate the stability of nAAbs against CS and Hsps throughout the pregnancies of both healthy women and those with HT. However, during both trimesters, HTP patients displayed elevated levels of IgM isotype nAAbs against Hsp60 and Hsp70 compared to HP women, suggesting a regulatory role of IgM nAAbs during the pregnancies of patients with HT. Nonetheless, levels of IgG isotype nAAbs against Hsps were lower solely in the third trimester among HTP patients, resulting in a higher IgM/IgG ratio, which indicates their importance in alterations of the nAAb network during pregnancy in patients with HT.


Subject(s)
Autoimmune Diseases , Hashimoto Disease , Pregnancy , Humans , Female , Autoantibodies , Pregnant Women , Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Immunoglobulin G , Chaperonin 60 , Immunoglobulin M
8.
Front Psychiatry ; 15: 1321354, 2024.
Article in English | MEDLINE | ID: mdl-38347880

ABSTRACT

Suicide is the most severe complication of major depressive disorder (MDD). Novel research assumes the role of immunological dysregulation in the background - several studies have reported alterations in the number of inflammatory cells related to both MDD and suicidality. There are currently no objective, routinely measured parameters to indicate suicidal vulnerability. However, altered inflammatory cell numbers and ratios have been proposed as potential biomarkers of suicide risk (SR). The present research aims to examine changes of these values related to increased SR in MDD as an assumed inflammatory state. We investigated laboratory parameters of psychiatric in-patients diagnosed with MDD (n = 101) retrospectively. Individuals with recent suicide attempt (SA) (n = 22) and with past SA (n = 19) represented the high SR group. MDD patients with no history of SA (n = 60) composed the intermediate SR group. We compared the number of neutrophil granulocytes, monocytes, lymphocytes, platelets, white blood cell count (WBC), neutrophil-to-lymphocyte (NLR), monocyte-to-lymphocyte (MLR), platelet-to-lymphocyte ratio (PLR), mean platelet volume (MPV), red blood cell distribution width (RDW) and erythrocyte sedimentation rate (ESR). Furthermore, we evaluated alterations of these parameters related to antidepressant (AD) and antipsychotic (AP) treatment, which have been proved to have anti-inflammatory effects. We found a significant increase in neutrophil granulocyte count, NLR, monocyte count, MLR, WBC and ESR in patients with recent SA compared to patients with no history of SA. Moreover, there was a significant elevation in monocyte count, MLR, ESR and RDW in patients with high SR compared to patients with intermediate SR. AD treatment resulted in a significant decrease in neutrophil granulocyte count and NLR, however, it did not affect monocyte count and MLR. Assuming immunological mechanisms in the background of MDD and suicidality, our findings support the role of NLR as a biomarker of acute SR, though its alterations may be masked by possible anti-inflammatory effects of AD treatment in the long term. However, MLR, a marker exhibiting changes which are not attenuated by pharmacotherapy, may be a possible indicator of both acute and long-term suicidal vulnerability.

9.
Front Cell Dev Biol ; 11: 1328261, 2023.
Article in English | MEDLINE | ID: mdl-38188022

ABSTRACT

In the last decades, mesenchymal stem cells (MSCs) have become the cornerstone of cellular therapy due to their unique characteristics. Specifically human placenta-derived mesenchymal stem cells (hPMSCs) are highlighted for their unique features, including ease to isolate, non-invasive techniques for large scale cell production, significant immunomodulatory capacity, and a high ability to migrate to injuries. Researchers are exploring innovative techniques to overcome the low regenerative capacity of Central Nervous System (CNS) neurons, with one promising avenue being the development of tailored mesenchymal stem cell therapies capable of promoting neural repair and recovery. In this context, we have evaluated hPMSCs as candidates for CNS lesion regeneration using a skillful co-culture model system. Indeed, we have demonstrated the hPMSCs ability to stimulate damaged rat-retina neurons regeneration by promoting axon growth and restoring neuronal activity both under normoxia and hypoxia conditions. With our model we have obtained neuronal regeneration values of 10%-14% and axonal length per neuron rates of 19-26, µm/neuron. To assess whether the regenerative capabilities of hPMSCs are contact-dependent effects or it is mediated through paracrine mechanisms, we carried out transwell co-culture and conditioned medium experiments confirming the role of secreted factors in axonal regeneration. It was found that hPMSCs produce brain derived, neurotrophic factor (BDNF), nerve-growth factor (NGF) and Neurotrophin-3 (NT-3), involved in the process of neuronal regeneration and restoration of the physiological activity of neurons. In effect, we confirmed the success of our treatment using the patch clamp technique to study ionic currents in individual isolated living cells demonstrating that in our model the regenerated neurons are electrophysiologically active, firing action potentials. The outcomes of our neuronal regeneration studies, combined with the axon-regenerating capabilities exhibited by mesenchymal stem cells derived from the placenta, present a hopeful outlook for the potential therapeutic application of hPMSCs in the treatment of neurological disorders.

SELECTION OF CITATIONS
SEARCH DETAIL