Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Int J Biol Macromol ; 278(Pt 1): 134392, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39098675

ABSTRACT

Leishmania donovani relies on specific vitamins and cofactors crucial for its survival and pathogenesis. Tailoring therapies to disrupt these pathways offers a promising strategy for the treatment of Visceral Leishmaniasis. Current treatment regimens are limited due to drug resistance and high costs. The dependency of Leishmania parasites on Vitamin B2 and its metabolic products is not known. In this study, we have biochemically and biophysically characterized a Vitamin B2 metabolism enzyme, riboflavin kinase from L. donovani (LdRFK) which converts riboflavin (vitamin B2) into flavin mononucleotide (FMN). Sequence comparison with human counterpart reflects 31.58 % identity only, thus opening up the possibility of exploring it as drug target. The rfk gene was cloned, expressed and the recombinant protein was purified. Kinetic parameters of LdRFK were evaluated with riboflavin and ATP as substrates which showed differential binding affinity when compared with the human RFK enzyme. Thermal and denaturant stability of the enzyme was evaluated. The rfk gene was overexpressed in the parasites and its role in growth and cell cycle was evaluated. In the absence of crystal structure, homology modelling and molecular dynamic simulation studies were performed to predict LdRFK structure. The data shows differences in substrate binding between human and parasite enzyme. This raises the possibility of exploring LdRFK for specific designing of antileishmanial molecules. Gene disruption studies can further validate its candidature as antileishmanial target.

2.
Arch Toxicol ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39181947

ABSTRACT

Snakebite envenomation is a serious health concern in tropical regions, resulting in high mortality. The World Health Organization (WHO) has declared it a neglected tropical disease and is working on strategies to reduce mortality. Russell's viper (Daboia russelii) is one of the most abundant venomous snakes found across Southeast Asia. Proteomic analysis of Russell's viper venom has demonstrated variation, with phospholipase A2 (PLA2) being the most abundant toxin across geographic boundaries. PLA2, a major constituent of the low-molecular-weight fraction of snake venom, hydrolyses phospholipids at the sn-2 position, releasing arachidonic acid and lysophospholipids. They are reported to cause various pharmacological effects, including hemolysis, anticoagulation, neurotoxicity, myotoxicity, and oedema. Though administration of antivenoms (ASV) is the primary treatment for envenomation, it has many drawbacks. Besides causing hypersensitivity reactions and life-threatening anaphylaxis, treatment with ASV is further complicated due to its inability to neutralize low-molecular-weight toxins. Thus, there is a greater need to produce next-generation antivenoms that can target specific toxins in the venom. In this review, we explored the classification of Russell's viper and the variation in its proteomic profile across Southeast Asia to date. In addition, we have also summarized the mechanism of action of PLA2 and discussed various isoforms of PLA2 found across different regions with their respective pharmacological effects. Finally, the drawbacks of commercially available antivenoms and the molecules investigated for inhibiting the low-molecular-weight toxin, PLA2 are discussed.

3.
Biochim Biophys Acta Gen Subj ; 1868(9): 130670, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996989

ABSTRACT

Cutaneous Leishmaniasis, an infectious disease is globally the most prevalent form of leishmaniasis accounting for approximately 1 million cases every year as per world health organization. Infected individuals develop skin lesion which has been reported to be infiltrated by immune cells and parasite with high sodium accumulation creating hypertonic environment. In our work, we tried to mimic the hypertonic environment in virtual environment to study dynamicity of SHP-1 and NFAT5 along with their interactions through molecular dynamics simulation. We validated the SHP-1 and NFAT5 dynamics in infection and HSD conditions to study the impact of hypertonicity derived NFAT5 mediated response to L.major infection. We also evaluated our therapeutic peptides for their binding to SHP-1 and to form stable complex. Membrane stability with the peptides was analyzed to understand their ability to sustain mammalian membrane. We identified PepA to be a potential candidate to interact with SHP-1. Inhibition of SHP-1 through PepA to discern IL-10 and IL-12 reciprocity may be assessed in future and furnish us with a potential therapeutic molecule. HSD mice exhibited high pro-inflammatory response to L.major infection which resulted in reduced lesion size. Contrary to observations in HSD mice, infection model exhibited low pro-inflammatory response and increased lesion size with high parasite load. Thus, increase in NFAT5 expression and reduced SHP-1 expression may result in disease resolving effect which can be further studied through incorporation of synthetic circuit using PepA to modulate IL-10 and IL-12 reciprocity.


Subject(s)
Leishmaniasis, Cutaneous , Peptides , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Animals , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Mice , Leishmaniasis, Cutaneous/metabolism , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/pathology , Peptides/pharmacology , Peptides/metabolism , Peptides/chemistry , Disease Models, Animal , Molecular Dynamics Simulation , Interleukin-10/metabolism , Leishmania major , Interleukin-12/metabolism , Humans , Mice, Inbred BALB C
4.
Protein J ; 43(4): 726-738, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38980535

ABSTRACT

In the realm of parasitology, autophagy has emerged as a critical focal point, particularly in combating Leishmaniasis. Central to this endeavour is the recognition of the protein ATG8 as pivotal for the survival and infectivity of the parasitic organism Leishmania major, thereby making it a potential target for therapeutic intervention. Consequently, there is a pressing need to delve into the structural characteristics of ATG8 to facilitate the design of effective drugs. In this study, our efforts centered on the purification of ATG8 from Leishmania major, which enabled novel insights into its structural features through meticulous spectroscopic analysis. We aimed to comprehensively assess the stability and behaviour of ATG8 in the presence of various denaturants, including urea, guanidinium chloride, and SDS-based chemicals. Methodically, our approach included secondary structural analysis utilizing CD spectroscopy, which not only validated but also augmented computationally predicted structures of ATG8 reported in previous investigations. Remarkably, our findings unveiled that the purified ATG8 protein retained its folded conformation, exhibiting the anticipated secondary structure. Moreover, our exploration extended to the influence of lipids on ATG8 stability, yielding intriguing revelations. We uncovered a nuanced perspective suggesting that targeting both the lipid composition of Leishmania major and ATG8 could offer a promising strategy for future therapeutic approaches in combating leishmaniasis. Collectively, our study underscores the importance of understanding the structural intricacies of ATG8 in driving advancements towards the development of targeted therapies against Leishmaniasis, thereby providing a foundation for future investigations in this field.


Subject(s)
Autophagy-Related Protein 8 Family , Autophagy , Leishmania major , Protozoan Proteins , Leishmania major/metabolism , Autophagy-Related Protein 8 Family/chemistry , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Humans , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Leishmaniasis/metabolism
5.
Int Immunopharmacol ; 134: 112100, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728877

ABSTRACT

The parasite Leishmania resides as amastigotes within the macrophage parasitophorous vacuoles inflicting the disease Leishmaniasis. Leishmania selectively modulates mitogen-activated protein kinase (MAPK) phosphorylation subverting CD40-triggered anti-leishmanial functions of macrophages. The mechanism of any pathogen-derived molecule induced host MAPK modulation remains poorly understood. Herein, we show that of the fifteen MAPKs, LmjMAPK4 expression is higher in virulent L. major. LmjMAPK4- detected in parasitophorous vacuoles and cytoplasm- binds MEK-1/2, but not MKK-3/6. Lentivirally-overexpressed LmjMAPK4 augments CD40-activated MEK-1/2-ERK-1/2-MKP-1, but inhibits MKK3/6-p38MAPK-MKP-3, phosphorylation. A rationally-identified LmjMAPK4 inhibitor reinstates CD40-activated host-protective anti-leishmanial functions in L. major-infected susceptible BALB/c mice. These results identify LmjMAPK4 as a MAPK modulator at the host-pathogen interface and establish a pathogen-intercepted host receptor signaling as a scientific rationale for identifying drug targets.


Subject(s)
CD40 Antigens , Leishmania major , Leishmaniasis, Cutaneous , Macrophages , Mice, Inbred BALB C , Signal Transduction , Animals , Leishmania major/immunology , Leishmania major/physiology , CD40 Antigens/metabolism , Mice , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Macrophages/immunology , Macrophages/parasitology , Humans , Female , Phosphorylation , Host-Parasite Interactions/immunology , MAP Kinase Signaling System/immunology
6.
Exp Parasitol ; 260: 108745, 2024 May.
Article in English | MEDLINE | ID: mdl-38521196

ABSTRACT

Autophagy is a key step involved in many unicellular eukaryotic diseases, including leishmaniasis, for cellular remodelling and differentiation during parasite's lifecycle. Lipids play a significant role in the infection process that begins with Leishmania major invading host cells. MicroRNAs (miRNAs), a family of small, 22-24 nucleotide noncoding regulatory RNAs, target mRNAs to modify gene expression and, subsequently, proteome output may have a regulatory role in altering the host cell processes. We observed miR-146a-3p expression increases in a time-dependent manner post Leishmania major infection. Transfecting miR-146a-3p mimic increases the expression of ATG7, an autophagy gene that encodes an E1-like enzyme in two ubiquitin-like conjugation systems required for autophagosome progression. HPGD (15-hydroxyprostaglandin dehydrogenase) operates as an enzyme, converting prostaglandin to its non-active form. Microarray data and western studies reveal that miR-146a-3p targets and inhibits HPGD, thereby increasing prostaglandin activity in lipid droplets. Herein, our research focuses on miR-146a-3p, which boosts ATG7 expression while reducing HPGD post Leishmania major infections helping us comprehend the intricate network of microRNA, autophagy, and lipid metabolism in leishmaniasis.


Subject(s)
Autophagy , Leishmania major , Leishmaniasis, Cutaneous , Lipid Metabolism , MicroRNAs , MicroRNAs/metabolism , MicroRNAs/genetics , Leishmania major/genetics , Leishmania major/physiology , Leishmania major/metabolism , Leishmaniasis, Cutaneous/parasitology , Animals , Mice , Autophagy-Related Protein 7/metabolism , Autophagy-Related Protein 7/genetics , Mice, Inbred BALB C , Macrophages/parasitology , Macrophages/metabolism , Humans , Transfection , Blotting, Western
7.
ChemMedChem ; 19(8): e202300679, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38317307

ABSTRACT

Cutaneous leishmaniasis caused by the intracellular parasite Leishmania major, exhibits significant public health challenge worldwide. With limited treatment options available, the identification of novel therapeutic targets is of paramount importance. Present study manifested the crucial role of ATG8 protein as a potential target in combating L. major infection. Using machine learning algorithms, we identified non-conserved motifs within the ATG8 in L. major. Subsequently, a peptide library was generated based on these motifs, and three peptides were selected for further investigation through molecular docking and molecular dynamics simulations. Surface Plasmon Resonance (SPR) experiments confirmed the direct interaction between ATG8 and the identified peptides. Remarkably, these peptides demonstrated the ability to cross the parasite membrane and exert profound effects on L. major. Peptide treatment significantly impacted parasite survival, inducing alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, indicating their involvement in autophagy regulation within L. major. In vitro studies revealed that the selected peptides effectively decreased the parasite load within the infected host cells. Encouragingly, in vivo experiments corroborated these findings, demonstrating a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II, a known autophagy marker within the host cells. Collectively, our findings highlight the efficacy of these novel peptides in targeting L. major ATG8 and disrupting parasite survival, wherein P2 is showing prominent effect on L. major as compared to P1. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis.


Subject(s)
Host-Parasite Interactions , Leishmaniasis, Cutaneous , Humans , Molecular Docking Simulation , Peptides/pharmacology , Leishmaniasis, Cutaneous/parasitology , Autophagy
8.
Microbiol Spectr ; 12(3): e0347823, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38299832

ABSTRACT

The hallmark characteristic of macrophages lies in their inherent plasticity, allowing them to adapt to dynamic microenvironments. Leishmania strategically modulates the phenotypic plasticity of macrophages, creating a favorable environment for intracellular survival and persistent infection through regulatory cytokine such as interleukin (IL)-10. Nevertheless, these effector cells can counteract infection by modulating crucial cytokines like IL-12 and key components involved in its production. Using sophisticated tool of single-cell assay for transposase accessible chromatin (ATAC) sequencing, we systematically examined the regulatory axis of IL-10 and IL-12 in a time-dependent manner during Leishmania major infection in macrophages Our analysis revealed the cellular heterogeneity post-infection with the regulators of IL-10 and IL-12, unveiling a reciprocal relationship between these cytokines. Notably, our significant findings highlighted the presence of sleepy macrophages and their pivotal role in mediating reciprocity between IL-10 and IL-12. To summarize, the roles of cytokine expression, transcription factors, cell cycle, and epigenetics of host cell machinery were vital in identification of sleepy macrophages, which is a transient state where transcription factors controlled the epigenetic remodeling and expression of genes involved in pro-inflammatory cytokine expression and recruitment of immune cells.IMPORTANCELeishmaniasis is an endemic affecting 99 countries and territories globally, as outlined in the 2022 World Health Organization report. The disease's severity is compounded by compromised host immune systems, emphasizing the pivotal role of the interplay between parasite and host immune factors in disease regulation. In instances of cutaneous leishmaniasis induced by L. major, macrophages function as sentinel cells. Our findings indicate that the plasticity and phenotype of macrophages can be modulated to express a cytokine profile involving IL-10 and IL-12, mediated by the regulation of transcription factors and their target genes post-L. major infection in macrophages. Employing sophisticated methodologies such as single-cell ATAC sequencing and computational genomics, we have identified a distinctive subset of macrophages termed "sleepy macrophages." These macrophages exhibit downregulated housekeeping genes while expressing a unique set of variable features. This data set constitutes a valuable resource for comprehending the intricate host-parasite interplay during L. major infection.


Subject(s)
Leishmania major , Leishmaniasis, Cutaneous , Humans , Cytokines/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Macrophages , Leishmaniasis, Cutaneous/parasitology , Interleukin-12/genetics , Interleukin-12/metabolism , Transcription Factors/metabolism
9.
Front Microbiol ; 15: 1338749, 2024.
Article in English | MEDLINE | ID: mdl-38362504

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the Leishmania genus. Despite the efforts to control and treat the disease, it still remains a major public health problem in many countries. Synthetic biology is a rapidly evolving interdisciplinary field that combines biology, engineering, and computer science to design and construct novel biological systems. In recent years, synthetic biology approaches have shown great promise for developing new and effective strategies to combat leishmaniasis. In this perspective, we summarize the recent advances in the use of synthetic biology for the development of vaccines, diagnostic tools, and novel therapeutics for leishmaniasis.

10.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279220

ABSTRACT

IL-6 and IL-17 are paradoxical cytokines that progress inflammatory states in chronic diseases, including cancer. In lung cancer, their role has been elucidated to favor cancer development by modulating signaling mechanisms critical to cellular growth. The intrinsic ability of these cytokines to influence macroautophagy is yet another reason to facilitate lung cancer. Here, we employed a systems immunology approach to discover the mechanistic role of these cytokines in cancer development. In a biological system, at later stages, the activation of NFkB stimulates immunosuppressive phenotypes to achieve tolerating effects in a transformed cell. We found that the upregulation of cytokines signaled M2 macrophages to modulate tumor responses through the activation of autophagic intermediates and inflammasome mediators. This caused immune perturbations in the tumor microenvironment, which were associated with cancer inflammation. To address these inflammatory states, we performed triggered event analysis to examine whether overexpressing immune effectors or downregulating immune suppressors may have an effect on cancer reversal. Interestingly, the inhibition of immune regulators opposed the model outcome to an increased immune response. Therefore, IL6-IL17-mediated regulation of lung cancer may address tumor malignancy and potentiate the development of newer therapeutics for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Interleukin-6 , Interleukin-17 , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Cytokines/therapeutic use , Tumor Microenvironment
11.
Biomedicines ; 11(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37893079

ABSTRACT

Lung cancer accounts for the highest number of deaths among men and women worldwide. Although extensive therapies, either alone or in conjunction with some specific drugs, continue to be the principal regimen for evolving lung cancer, significant improvements are still needed to understand the inherent biology behind progressive inflammation and its detection. Unfortunately, despite every advancement in its treatment, lung cancer patients display different growth mechanisms and continue to die at significant rates. Autophagy, which is a physiological defense mechanism, serves to meet the energy demands of nutrient-deprived cancer cells and sustain the tumor cells under stressed conditions. In contrast, autophagy is believed to play a dual role during different stages of tumorigenesis. During early stages, it acts as a tumor suppressor, degrading oncogenic proteins; however, during later stages, autophagy supports tumor cell survival by minimizing stress in the tumor microenvironment. The pivotal role of the IL6-IL17-IL23 signaling axis has been observed to trigger autophagic events in lung cancer patients. Since the obvious roles of autophagy are a result of different immune signaling cascades, systems biology can be an effective tool to understand these interconnections and enhance cancer treatment and immunotherapy. In this review, we focus on how systems biology can be exploited to target autophagic processes that resolve inflammatory responses and contribute to better treatment in carcinogenesis.

12.
Bioinform Adv ; 3(1): vbad125, 2023.
Article in English | MEDLINE | ID: mdl-37799190

ABSTRACT

Motivation: Leishmaniasis is a global concern especially in underdeveloped and developing subtropical and tropical regions. The extent of infectivity in host is majorly dependent on functional polarization of macrophages. Classically activated M1 macrophage can eliminate parasite through production of iNOS and alternatively activated M2 macrophages can promote parasite growth through by providing shelter and nutrients to parasite. The biological processes involved in immune signaling and metabolism of host and parasite might be responsible for deciding fate of parasite. Results: Using systems biology approach, we constructed two mathematical models and inter-regulatory immune-metabolic networks of M1 and M2 state, through which we identified crucial components that are associated with these phenotypes. We also demonstrated how parasite may modulate M1 phenotype for its growth and proliferation and transition to M2 state. Through our previous findings as well as from recent findings we could identify SHP-1 as a key component in regulating the immune-metabolic characterization of M2 macrophage. By targeting SHP-1 at cellular level, it might be possible to modulate immuno-metabolic mechanism and thereby control parasite survival. Availability and implementation: Mathematical modeling is implemented as a workflow and the models are deposited in BioModel database. FactoMineR is available at: https://github.com/cran/FactoMineR/tree/master.

13.
J Biomol Struct Dyn ; : 1-15, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37728544

ABSTRACT

Antibiotic resistance against Mycobacterium tuberculosis (M.tb.) has been a significant cause of death worldwide. The Enhanced intracellular survival (EIS) protein of the bacteria is an acetyltransferase that multiacetylates aminoglycoside antibiotics, preventing them from binding to the bacterial ribosome. To overcome the EIS-mediated antibiotics resistance of M.tb., we compiled 888 alkaloids and derivatives from five different databases and virtually screened them against the EIS receptor. The compound library was filtered down to 87 compounds, which underwent additional analysis and filtration. Moreover, the top 15 most prominent phytocompounds were obtained after the drug-likeness prediction and ADMET screening. Out of 15, nine compounds confirmed the maximum number of hydrogen bond interactions and reliable binding energies during molecular docking. Additionally, the Molecular dynamics (MD) simulation of nine compounds showed the three most stable complexes, further verified by re-docking with mutated protein. The density functional theory (DFT) calculation was performed to identify the HOMO-LUMO energy gaps of the selected three potential compounds. Finally, our selected top lead compounds i.e., Alkaloid AQC2 (PubChem85634496), Nobilisitine A (ChEbi68116), and N-methylcheilanthifoline (ChEbi140673) demonstrated more favourable outcomes when compared with reference compounds (i.e., 39b and 2i) in all parameters used in this study. Therefore, we anticipate that our findings will help to explore and develop natural compound therapy against multi and extensively drug-resistant strains of M.tb.Communicated by Ramaswamy H. Sarma.

14.
Front Mol Biosci ; 10: 1113249, 2023.
Article in English | MEDLINE | ID: mdl-37152895

ABSTRACT

Autophagy is a contentious issue in leishmaniasis and is emerging as a promising therapeutic regimen. Published research on the impact of autophagic regulation on Leishmania survival is inconclusive, despite numerous pieces of evidence that Leishmania spp. triggers autophagy in a variety of cell types. The mechanistic approach is poorly understood in the Leishmania parasite as autophagy is significant in both Leishmania and the host. Herein, this review discusses the autophagy proteins that are being investigated as potential therapeutic targets, the connection between autophagy and lipid metabolism, and microRNAs that regulate autophagy and lipid metabolism. It also highlights the use of systems biology to develop novel autophagy-dependent therapeutics for leishmaniasis by utilizing artificial intelligence (AI), machine learning (ML), mathematical modeling, network analysis, and other computational methods. Additionally, we have shown many databases for autophagy and metabolism in Leishmania parasites that suggest potential therapeutic targets for intricate signaling in the autophagy system. In a nutshell, the detailed understanding of the dynamics of autophagy in conjunction with lipids and miRNAs unfolds larger dimensions for future research.

15.
Transl Oncol ; 33: 101673, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37062237

ABSTRACT

Non-Small Cell Lung Cancer (NSCLC) is the most prevalent kind of lung cancer with around 85% of total lung cancer cases. Despite vast therapies being available, the survival rate is low (5 year survival rate is 15%) making it essential to comprehend the mechanism for NSCLC cell survival and progression. The plethora of evidences suggests that the Post Translational Modification (PTM) such as phosphorylation, methylation, acetylation, glycosylation, ubiquitination and SUMOylation are involved in various types of cancer progression and metastasis including NSCLC. Indeed, an in-depth understanding of PTM associated with NSCLC biology will provide novel therapeutic targets and insight into the current sophisticated therapeutic paradigm. Herein, we reviewed the key PTMs, epigenetic modulation, PTMs crosstalk along with proteogenomics to analyze PTMs in NSCLC and also, highlighted how epi­miRNA, miRNA and PTM inhibitors are key modulators and serve as promising therapeutics.

16.
Article in English | MEDLINE | ID: mdl-36494028

ABSTRACT

IL-6, IL-17, IL-23 and IL-1ß are the crucial cytokines controlling inflammatory and immune response during L. major infection. During cutaneous leishmaniasis, an important T helper cell type CD4+ Th17 subset plays a deterministic role in lesion formation through channelling infected macrophages and production of IL-1ß, IL-6, IL-23 and IFN-γ. Ceramide derived sphingosine precursors may assist in pro-inflammatory cytokine response. However, the role of these metabolites in inflammation with pleiotropic pro-inflammatory cytokines in L. major infection is unknown. The present study indicates IL-6/IL-17/IL-23 and SPHK1-S1P-S1PRs signaling axes with the overexpression of SATB1 aiding in disease progression. Targeting SATB1 might modulate the secretion of pro-inflammatory cytokines and abnormal immune functioning, thereby killing the intracellular parasite. Systems immunological methods assisted in a step towards identifying the key to the mystery of crucial components and serving as an approach for therapeutic intervention in L. major infection.


Subject(s)
Interleukin-6 , Matrix Attachment Region Binding Proteins , Sphingolipids , Models, Immunological , Interleukin-17 , Cytokines/metabolism , Interleukin-23
17.
Curr Res Immunol ; 3: 186-198, 2022.
Article in English | MEDLINE | ID: mdl-36051499

ABSTRACT

Cytokines are influential molecules which can direct cells behavior. In this review, cytokines are referred as messengers, immune cells which respond to cytokine stimulus are referred as receivers and the immune cells which gets modulated due to their plasticity induced by infectious pathogen leishmania, are referred as followers. The advantage of plasticity of cells is taken by the parasite to switch them from parasite eliminating form to parasite survival favoring form through a process called as reciprocity which is undergone by cytokines, wherein pro-inflammatory to anti-inflammatory switch occur rendering immune cell population to switch their phenotype. Detailed study of this switch can help in identification of important targets which can help in restoring the phenotype to parasite eliminating form and this can be done through synthetic circuit, finding its wider applicability in therapeutics.

18.
Life Sci ; 308: 120960, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36116527

ABSTRACT

Systems pharmacology helps to understand the complex relationships between biological systems, drugs, and infection model; Leishmania major being one of them. It has aided the drug discovery process by addressing the concerns about economic stress, drug toxicity, and the emergence of resistance. Two million new leishmaniasis cases are reported annually, and >350 million people are at risk globally due to the parasite Leishmania. Trypanothione reductase (TryR) from the parasite-specific redox metabolism is a promising target. In the discipline of medicinal chemistry, benzimidazole is a strong pharmacophore and exhibits a broad range of biological activities. In the current study, benzimidazole derivatives were explored using computational, enzyme kinetics, biological activity, cytotoxic impact characterization, and in-silico ADME-Tox predictions, followed by their confirmation through in-vitro and animal experiments to discover novel inhibitors for TryR from Leishmania major. During rigorous in-silico screening, two benzimidazole derivatives were chosen for further experimentation. In-vitro testing revealed that compound C1 has a higher binding affinity for the TryR protein. Treatment with compound C1 caused significant morphological changes in the parasite, including size reduction, membrane blebbing, loss of motility, and improved anti-leishmanial efficacy. The compound C1 had significant anti-leishmanial potential against L. major promastigotes and demonstrated apoptosis-mediated leishmanicidal activity (apoptosis-like cell death). Furthermore, BALB/c female mice treated with C1 reduced parasite burden. Our findings depicts that C1 successfully lowered the parasite load and has a therapeutic impact on infected mice making C1 as a promising lead compound that, with additional modifications, may be exploited to create novel anti-leishmanial therapies.


Subject(s)
Antiprotozoal Agents , Leishmania , Leishmaniasis , Animals , Antiprotozoal Agents/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Female , Lead , Leishmaniasis/drug therapy , Mice , Mice, Inbred BALB C , Network Pharmacology
19.
J Cell Biochem ; 123(11): 1827-1840, 2022 11.
Article in English | MEDLINE | ID: mdl-35977046

ABSTRACT

Increasing research suggests that sphingolipid metabolism is essential for the progression and metastasis of cancer. The underlying mechanistic insight into the dysregulation of sphingolipid metabolism affecting pathways is poorly investigated. As a result, the goal of the current study was to glean knowledge from the systems biology approach to investigate how the sphingolipid metabolism affects the signal transduction network in non-small cell lung cancer (NSCLC), the most common type of cancer in terms of occurrence and death globally. Our paper includes system-level models representing the diseased and healthy states elucidating that sphingolipids and its enzymes mediate PI3K/AKT pathway. Notably, its activation of downstream signaling mediators has led to cancer growth. Considering the critical role of sphingolipids in NSCLC, our study advocates the target CERS6 which can be potentially inhibited using hsa-miR-520c-3p to combat NSCLC for future precision medicine.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Lung Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation , Signal Transduction , Sphingolipids , Cell Line, Tumor
20.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166466, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35750267

ABSTRACT

Identification of molecular targets in any cellular phenomena is a challenge and a path that one endeavors upon independently. We have identified a phosphatase SHP-1 as a point of intervention of IL-10 and IL-12 reciprocity in leishmaniasis. The therapeutic model that we have developed uniquely targets this protein but the pipeline in general can be used by the researchers for their unique targets. Naturally occurring peptides are well known for their biochemical participation in cellular functions hence we were motivated to use this uniqueness of physico-chemical properties of peptides conferred by amino acids through machine learning to channelize a mode of therapeutic exploration in infectious disease. Using computational approaches, we identified high order sequence conservation and similarity in SHP-1 sequence which was also evolutionarily conserved, complete structure of Mouse SHP-1 was predicted and validated, a unique motif of the same was identified against which library of synthetic peptides were designed and validated followed by screening the library by docking them with MuSHP-1 protein structure. Our findings showed 3 peptides had high binding affinity and in future can be validated using cell based and in vivo assays.


Subject(s)
Parasites , Animals , Artificial Intelligence , Interleukin-10 , Interleukin-12 , Mice , Parasites/metabolism , Peptides/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6
SELECTION OF CITATIONS
SEARCH DETAIL