Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Vaccines (Basel) ; 11(2)2023 Feb 13.
Article En | MEDLINE | ID: mdl-36851307

A neonatal vaccination against the Hepatitis B virus (HBV) infection was initiated in Russia 20 years ago, with catch-up immunization for adolescents and adults under the age of 60 years launched in 2006. Here, we have assessed the humoral immunity to HBV in different regions of Russia, as well as the infection frequency following 20 years of a nationwide vaccination campaign. We have also evaluated the role of immune-escape variants in continuing HBV circulation. A total of 36,149 healthy volunteers from nine regions spanning the Russian Federation from west to east were tested for HBV surface antigen (HBsAg), antibodies to HBV capsid protein (anti-HBc), and antibodies to HBsAg (anti-HBs). HBV sequences from 481 chronic Hepatitis B patients collected from 2018-2022 were analyzed for HBsAg immune-escape variants, compared with 205 sequences obtained prior to 2010. Overall, the HBsAg detection rate was 0.8%, with this level significantly exceeded only in one study region, the Republic of Dagestan (2.4%, p < 0.0001). Among the generation vaccinated at birth, the average HBsAg detection rate was below 0.3%, ranging from 0% to 0.7% depending on the region. The anti-HBc detection rate in subjects under 20 years was 7.4%, indicating ongoing HBV circulation. The overall proportion of participants under 20 years with vaccine-induced HBV immunity (anti-HBs positive, anti-HBc negative) was 41.7% but below 10% in the Tuva Republic and below 25% in the Sverdlovsk and Kaliningrad regions. The overall prevalence of immune-escape HBsAg variants was 25.2% in sequences obtained from 2018-2022, similar to the prevalence of 25.8% in sequences collected prior to 2010 (p > 0.05). The population dynamics of immune-escape variants predicted by Bayesian analysis have remained stable over the last 20 years, indicating the absence of vaccine-driven positive selection. In contrast, the wild-type HBV population size experienced a rapid decrease starting in the mid-1990s, following the introduction of mass immunization, but it subsequently began to recover, reaching pre-vaccination levels by 2020. Taken together, these data indicate that it is gaps in vaccination, and not virus evolution, that may be responsible for the continued virus circulation despite 20 years of mass vaccination.

2.
BMC Infect Dis ; 22(1): 452, 2022 May 12.
Article En | MEDLINE | ID: mdl-35550023

BACKGROUND: The geographic distribution of the hepatitis B virus (HBV) and the hepatitis D virus (HDV) genotypes is uneven. We reconstructed the temporal evolution of HBV and HDV in Yakutia, one of the regions of Russia most affected by HBV and HDV, in an attempt to understand the possible mechanisms that led to unusual for Russia pattern of viral genotypes and to identify current distribution trends. METHODS: HBV and HDV genotypes were determined in sera collected in 2018-2019 in Yakutia from randomly selected 140 patients with HBV monoinfection and 59 patients with HBV/HDV. Total 86 HBV and 88 HDV genomic sequences isolated in Yakutia between 1997 and 2019 were subjected to phylodynamic and philogeographic Bayesian analysis using BEAST v1.10.4 software package. Bayesian SkyGrid reconstruction and Birth-Death Skyline analysis were applied to estimate HBV and HDV population dynamics. RESULTS: Currently, HBV-A and HDV-D genotypes are prevalent in Yakutia, in both monoinfected and HDV-coinfected patients. Bayesian analysis has shown that the high prevalence of HBV-A in Yakutia, which is not typical for Russia, initially emerged after the genotype was introduced from Eastern Europe in the fifteenth century (around 600 (95% HPD: 50-715) years ago). The acute hepatitis B epidemics in the 1990s in Yakutia were largely associated with this particular genotype, as indicated by temporal changes in HBV-A population dynamics. HBV-D had a longer history in Yakutia and demonstrated stable population dynamics, indicating ongoing viral circulation despite vaccination. No correlation between HBV and HDV genotypes was observed for coinfected patients in Yakutia (r = - 0.016069332). HDV-2b circulates in Russia in Yakutia only and resulted from a single wave of introduction from Central Asia 135 years ago (95% HPD: 60-350 years), while HDV-1 strains resulted from multiple introductions from Europe, the Middle East, Central Asia, and different parts of Russia starting 180 years ago (95% HPD: 150-210 years) and continuing to the present day. The population dynamics of HDV-1 and HDV-2 show no signs of decline despite 20 years of HBV vaccination. The Birth-Death Skyline analysis showed an increase in the viral population in recent years for both HDV genotypes, indicating ongoing HDV epidemics. CONCLUSIONS: Taken together, these data call for strict control of HBV vaccination quality and coverage, and implementation of HBV and HDV screening programs in Yakutia.


Coinfection , Hepatitis B , Hepatitis D , Bayes Theorem , Coinfection/epidemiology , Genotype , Hepatitis B virus/genetics , Hepatitis D/complications , Hepatitis Delta Virus/genetics , Humans , Phylogeny
3.
Vaccines (Basel) ; 9(2)2021 Jan 23.
Article En | MEDLINE | ID: mdl-33498794

Universal hepatitis B vaccination of newborns was implemented in Russia starting from 1998. From 1998 to 2019, the incidence of acute hepatitis B reduced from 43.8 to 0.57 cases per 100,000 population. Here, we assessed the timely coverage of newborns with the birth dose (HepB-BD), second dose (HepB-2nd), and three vaccine doses (HepB3) in two remote regions of Russia with low (Belgorod Oblast) and high (Yakutia) levels of hepatitis B virus (HBV) endemicity. Vaccination data were obtained from the medical records of 1000 children in Yakutia and 2182 children in Belgorod Oblast. Sera of healthy volunteers from Belgorod Oblast (n = 1754) and Yakutia (n = 1072) across all age groups were tested for serological markers of HBV to assess the infection prevalence and herd immunity. Average HepB-BD coverage was 99.2% in Yakutia and 89.4% in Belgorod Oblast (p < 0.0001) and in both regions varied significantly, from 66% to 100%, between medical centers. The principal reason for the absence of HepB-BD was parent refusal, which accounted for 63.5% of cases of non-vaccination (83/123). While timely HepB-2nd coverage was only 55.4%-64.7%: HepB3 coverage by the age of one year exceeded 90% in both study regions. HBV surface antigen (HBsAg) prevalence in the 1998-2019 birth cohort was 0.2% (95% CI: 0.01-1.3%) in Belgorod Oblast and 3.2% (95% CI: 1.9-5.2%) in Yakutia. The proportion of persons testing negative for both antibodies to HBsAg (anti-HBs) and antibodies to HBV core antigen (anti-HBc) in the 1998-2019 birth cohort was 26.2% (125/481) in Belgorod Oblast and 32.3% (162/501) in Yakutia. We also assessed the knowledge of and attitude towards vaccination among 782 students and teachers of both medical and non-medical specialties from Belgorod State University. Only 60% of medical students knew that hepatitis B is a vaccine-preventable disease. Both medical and nonmedical students, 37.8% and 31.3%, respectively, expressed concerns about safety and actual necessity of vaccination. These data indicate the need to introduce a vaccine delivery audit system, improve medical education with respect to vaccination strategies and policies, and reinforce public knowledge on the benefits of vaccination.

...