Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Genome ; : e20490, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044485

ABSTRACT

Seminal root angle (SRA) is an important root architectural trait associated with drought adaptation in cereal crops. To date, all attempts to dissect the genetic architecture of SRA in durum wheat (Triticum durum Desf.) have used large association panels or structured mapping populations. Identifying changes in allele frequency generated by selection provides an alternative genetic mapping approach that can increase the power and precision of QTL detection. This study aimed to map quantitative trait loci (QTL) for SRA by genotyping durum lines created through divergent selection using a combination of marker-assisted selection (MAS) for the major SRA QTL (qSRA-6A) and phenotypic selection for SRA over multiple generations. The created 11 lines (BC1F2:5) were genotyped with genome-wide single-nucleotide polymorphism (SNP) markers to map QTL by identifying markers that displayed segregation distortion significantly different from the Mendelian expectation. QTL regions were further assessed in an independent validation population to confirm their associations with SRA. The experiment revealed 14 genomic regions under selection, 12 of which have not previously been reported for SRA. Five regions, including qSRA-6A, were confirmed in the validation population. The genomic regions identified in this study indicate that the genetic control of SRA is more complex than previously anticipated. Our study demonstrates that selection mapping is a powerful approach to complement genome-wide association studies for QTL detection. Moreover, the verification of qSRA-6A in an elite genetic background highlights the potential for MAS, although it is necessary to combine additional QTL to develop new cultivars with extreme SRA phenotypes.

2.
Plant Phenomics ; 6: 0215, 2024.
Article in English | MEDLINE | ID: mdl-39049840

ABSTRACT

Phenomic selection is a recent approach suggested as a low-cost, high-throughput alternative to genomic selection. Instead of using genetic markers, it employs spectral data to predict complex traits using equivalent statistical models. Phenomic selection has been shown to outperform genomic selection when using spectral data that was obtained within the same generation as the traits that were predicted. However, for hybrid breeding, the key question is whether spectral data from parental genotypes can be used to effectively predict traits in the hybrid generation. Here, we aimed to evaluate the potential of phenomic selection for hybrid rapeseed breeding. We performed predictions for various traits in a structured population of 410 test hybrids, grown in multiple environments, using near-infrared spectroscopy data obtained from harvested seeds of both the hybrids and their parental lines with different linear and nonlinear models. We found that phenomic selection within the hybrid generation outperformed genomic selection for seed yield and plant height, even when spectral data was collected at single locations, while being less affected by population structure. Furthermore, we demonstrate that phenomic prediction across generations is feasible, and selecting hybrids based on spectral data obtained from parental genotypes is competitive with genomic selection. We conclude that phenomic selection is a promising approach for rapeseed breeding that can be easily implemented without any additional costs or efforts as near-infrared spectroscopy is routinely assessed in rapeseed breeding.

3.
Physiol Plant ; 176(3): e14315, 2024.
Article in English | MEDLINE | ID: mdl-38693794

ABSTRACT

Rapeseed (Brassica napus L.) is an oil-containing crop of great economic value but with considerable nitrogen requirement. Breeding root systems that efficiently absorb nitrogen from the soil could be a driver to ensure genetic gains for more sustainable rapeseed production. The aim of this study is to identify genomic regions that regulate root morphology in response to nitrate availability. The natural variability offered by 300 inbred lines was screened at two experimental locations. Seedlings grew hydroponically with low or elevated nitrate levels. Fifteen traits related to biomass production and root morphology were measured. On average across the panel, a low nitrate level increased the root-to-shoot biomass ratio and the lateral root length. A large phenotypic variation was observed, along with important heritability values and genotypic effects, but low genotype-by-nitrogen interactions. Genome-wide association study and bulk segregant analysis were used to identify loci regulating phenotypic traits. The first approach nominated 319 SNPs that were combined into 80 QTLs. Three QTLs identified on the A07 and C07 chromosomes were stable across nitrate levels and/or experimental locations. The second approach involved genotyping two groups of individuals from an experimental F2 population created by crossing two accessions with contrasting lateral root lengths. These individuals were found in the tails of the phenotypic distribution. Co-localized QTLs found in both mapping approaches covered a chromosomal region on the A06 chromosome. The QTL regions contained some genes putatively involved in root organogenesis and represent selection targets for redesigning the root morphology of rapeseed.


Subject(s)
Brassica napus , Nitrogen , Phenotype , Plant Roots , Quantitative Trait Loci , Plant Roots/genetics , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/metabolism , Nitrogen/metabolism , Quantitative Trait Loci/genetics , Brassica napus/genetics , Brassica napus/growth & development , Brassica napus/anatomy & histology , Brassica napus/metabolism , Genotype , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Biomass , Nitrates/metabolism , Chromosome Mapping , Genetic Variation
4.
Genome ; 67(7): 210-222, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38708850

ABSTRACT

Advances in sequencing technology allow whole plant genomes to be sequenced with high quality. Combining genotypic and phenotypic data in genomic prediction helps breeders to select crossing partners in partially phenotyped populations. In plant breeding programs, the cost of sequencing entire breeding populations still exceeds available genotyping budgets. Hence, the method for genotyping is still mainly single nucleotide polymorphism (SNP) arrays; however, arrays are unable to assess the entire genome- and population-wide diversity. A compromise involves genotyping the entire population using an SNP array and a subset of the population with whole-genome sequencing. Both datasets can then be used to impute markers from whole-genome sequencing onto the entire population. Here, we evaluate whether imputation of whole-genome sequencing data enhances genomic predictions, using data from a nested association mapping population of rapeseed (Brassica napus). Employing two cross-validation schemes that mimic scenarios for the prediction of close and distant relatives, we show that imputed marker data do not significantly improve prediction accuracy, likely due to redundancy in relationship estimates and imputation errors. In simulation studies, only small improvements were observed, further corroborating the findings. We conclude that SNP arrays are already equipped with the information that is added by imputation through relationship and linkage disequilibrium.


Subject(s)
Brassica napus , Genome, Plant , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Brassica napus/genetics , Whole Genome Sequencing/methods , Plant Breeding/methods , Linkage Disequilibrium , Genomics/methods , Genotype
5.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38808682

ABSTRACT

Recombination is a key mechanism in breeding for promoting genetic variability. Multiparental populations (MPPs) constitute an excellent platform for precise genotype phasing, identification of genome-wide crossovers (COs), estimation of recombination frequencies, and construction of recombination maps. Here, we introduce haploMAGIC, a pipeline to detect COs in MPPs with single-nucleotide polymorphism (SNP) data by exploiting the pedigree relationships for accurate genotype phasing and inference of grandparental haplotypes. haploMAGIC applies filtering to prevent false-positive COs due to genotyping errors (GEs), a common problem in high-throughput SNP analysis of complex plant genomes. Hence, it discards haploblocks not reaching a specified minimum number of informative alleles. A performance analysis using populations simulated with AlphaSimR revealed that haploMAGIC improves upon existing methods of CO detection in terms of recall and precision, most notably when GE rates are high. Furthermore, we constructed recombination maps using haploMAGIC with high-resolution genotype data from 2 large multiparental populations of winter rapeseed (Brassica napus). The results demonstrate the applicability of the pipeline in real-world scenarios and showed good correlations in recombination frequency compared with alternative software. Therefore, we propose haploMAGIC as an accurate tool at CO detection with MPPs that shows robustness against GEs.


Subject(s)
Genotyping Techniques , Haplotypes , Polymorphism, Single Nucleotide , Recombination, Genetic , Genotyping Techniques/methods , Brassica napus/genetics , Software , Genotype , Genome, Plant , Crossing Over, Genetic
6.
Theor Appl Genet ; 137(6): 125, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727862

ABSTRACT

KEY MESSAGE: PHOTOPERIOD-1 homoeologous gene copies play a pivotal role in regulation of flowering time in wheat. Here, we show that their influence also extends to spike and shoot architecture and even impacts root development. The sequence diversity of three homoeologous copies of the PHOTOPERIOD-1 gene in European winter wheat was analyzed by Oxford Nanopore amplicon-based multiplex sequencing and molecular markers in a panel of 194 cultivars representing breeding progress over the past 5 decades. A strong, consistent association with an average 8% increase in grain yield was observed for the PpdA1-Hap1 haplotype across multiple environments. This haplotype was found to be linked in 51% of cultivars to the 2NS/2AS translocation, originally introduced from Aegilops ventricosa, which leads to an overestimation of its effect. However, even in cultivars without the 2NS/2AS translocation, PpdA1-Hap1 was significantly associated with increased grain yield, kernel per spike and kernel per m2 under optimal growth conditions, conferring a 4% yield advantage compared to haplotype PpdA1-Hap4. In contrast to Ppd-B1 and Ppd-D1, the Ppd-A1 gene exhibits novel structural variations and a high number of SNPs, highlighting the evolutionary changes that have occurred in this region over the course of wheat breeding history. Additionally, cultivars carrying the photoperiod-insensitive Ppd-D1a allele not only exhibit earlier heading, but also deeper roots compared to those with photoperiod-sensitive alleles under German conditions. PCR and KASP assays have been developed that can be effectively employed in marker-assisted breeding programs to introduce these favorable haplotypes.


Subject(s)
Haplotypes , Plant Roots , Triticum , Triticum/genetics , Triticum/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Phenotype , Polymorphism, Single Nucleotide , Plant Breeding , Photoperiod , Genes, Plant , Genetic Markers
7.
BMC Plant Biol ; 24(1): 83, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308236

ABSTRACT

BACKGROUND: A sufficient nitrogen supply is crucial for high-quality wheat yields. However, the use of nitrogen fertilization can also negatively influence ecosystems due to leaching or volatile atmospheric emissions. Drought events, increasingly prevalent in many crop production areas, significantly impact nitrogen uptake. Breeding more efficient wheat varieties is necessary to achieve acceptable yields with limited nitrogen and water. Crop root systems play a crucial role as the primary organ for absorbing water and nutrients. To investigate the impact of an enhanced root system on nitrogen and water use efficiency in wheat under various irrigation conditions, this study conducted two experiments using precision phenotyping platforms for controlled drought stress treatment. Experiment 1 involved four contrasting winter wheat genotypes. It included the Chinese variety Ning0604, carrying a quantitative trait locus (QTL) on chromosome 5B associated with a higher root dry biomass, and three elite German varieties, Elixer, Genius, and Leandrus. Experiment 2 compared near-isogenic lines (NIL) of the three elite varieties, each containing introgressions of the QTL on chromosome 5B linked to root dry mass. In both experiments, nitrogen partitioning was tracked via isotope discrimination after fertilization with 5 Atom % 15N-labeled KNO3-. RESULTS: In experiment 1 the quantification by 15N isotope discrimination revealed significantly (p < 0.05) higher nitrogen derived from fertilizer in the root organ for Ning0604 than those of the three German varieties. In experiment 2, two out of three NILs showed a significantly (p < 0.05) higher uptake of N derived from fertilizer than their respective recipient line under well-watered conditions. Furthermore, significantly lower transpiration rates (p < 0.1) were observed in one NIL compared to its respective recipient. CONCLUSIONS: The combination of the DroughtSpotter facility coupled with 15N tracer-based tracking of N uptake and remobilization extends the insight into the impact of genetically altered root biomass on wheat NUE and WUE under different water availability scenarios. The study shows the potential for how a modified genetic constitution of the locus on wheat chromosome 5B can reduce transpiration and enhance N uptake. The dependence of the observations on the recipient and water availability suggests a need for further research to investigate the interaction with genetic background traits.


Subject(s)
Nitrogen , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Triticum/genetics , Droughts , Ecosystem , Fertilizers , Plant Breeding , Water , Chromosomes , Isotopes
8.
Theor Appl Genet ; 137(1): 16, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189816

ABSTRACT

KEY MESSAGE: Simulation planned pre-breeding can increase the efficiency of starting a hybrid breeding program. Starting a hybrid breeding program commonly comprises a grouping of the initial germplasm in two pools and subsequent selection on general combining ability. Investigations on pre-breeding steps before starting the selection on general combining ability are not available. Our goals were (1) to use computer simulations on the basis of DNA markers and testcross data to plan crosses that separate genetically two initial germplasm pools of rapeseed, (2) to carry out the planned crosses, and (3) to verify experimentally the pool separation as well as the increase in testcross performance. We designed a crossing program consisting of four cycles of recombination. In each cycle, the experimentally generated material was used to plan the subsequent crossing cycle with computer simulations. After finishing the crossing program, the initially overlapping pools were clearly separated in principal coordinate plots. Doubled haploid lines derived from the material of crossing cycles 1 and 2 showed an increase in relative testcross performance for yield of about 5% per cycle. We conclude that simulation-designed pre-breeding crossing schemes, that were carried out before the general combining ability-based selection of a newly started hybrid breeding program, can save time and resources, and in addition conserve more of the initial genetic variation than a direct start of a hybrid breeding program with general combining ability-based selection.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , Plant Breeding , Brassica rapa/genetics , Computer Simulation , Haploidy
SELECTION OF CITATIONS
SEARCH DETAIL