Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 10(7): 4635-4644, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38822812

ABSTRACT

In the evolving field of drug discovery and development, multiorgans-on-a-chip and microphysiological systems are gaining popularity owing to their ability to emulate in vivo biological environments. Among the various gut-liver-on-a-chip systems for studying oral drug absorption, the chip developed in this study stands out with two distinct features: incorporation of perfluoropolyether (PFPE) to effectively mitigate drug sorption and a unique enterohepatic single-passage system, which simplifies the analysis of first-pass metabolism and oral bioavailability. By introducing a bolus drug injection into the liver compartment, hepatic extraction alone could be evaluated, further enhancing our estimation of intestinal availability. In a study on midazolam (MDZ), PFPE-based chips showed more than 20-times the appearance of intact MDZ in the liver compartment effluent compared to PDMS-based counterparts. Notably, saturation of hepatic metabolism at higher concentrations was confirmed by observations when the dose was reduced from 200 µM to 10 µM. This result was further emphasized when the metabolism was significantly inhibited by the coadministration of ketoconazole. Our chip, which is designed to minimize the dead volume between the gut and liver compartments, is adept at sensitively observing the saturation of metabolism and the effect of inhibitors. Using genome-edited CYP3A4/UGT1A1-expressing Caco-2 cells, the estimates for intestinal and hepatic availabilities were 0.96 and 0.82, respectively; these values are higher than the known human in vivo values. Although the metabolic activity in each compartment can be further improved, this gut-liver-on-a-chip can not only be used to evaluate oral bioavailability but also to carry out individual assessment of both intestinal and hepatic availability.


Subject(s)
Biological Availability , Ethers , Fluorocarbons , Liver , Liver/metabolism , Fluorocarbons/chemistry , Fluorocarbons/pharmacokinetics , Fluorocarbons/metabolism , Humans , Administration, Oral , Lab-On-A-Chip Devices , Caco-2 Cells , Cytochrome P-450 CYP3A/metabolism , Animals
2.
Int J Pharm ; 627: 122253, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36183916

ABSTRACT

Recently, increasing attention has been paid to liver-on-a-chip models for both pharmacokinetics and toxicity (ADMET) screenings. Although polydimethylsiloxane (PDMS) is the most popular material for the fabrication of microfluidic devices, its extensive sorption of hydrophobic drugs limits its applications. Therefore, we investigated a chemically repellent material, perfluoropolyether (PFPE) elastomer, as an alternative to PDMS. Primary rat hepatocytes cultured in the PFPE microfluidic device were polygonal or cuboidal in shape and had one or two prominent nuclei, as when cultured in 96-well plates. When hepatocytes were cultured in the PFPE microfluidic device and exposed to dynamic flow, the production of albumin and urea increased 3.94- and 1.72-fold, respectively, compared with no dynamic flow. Exposure to dynamic flow did not result in obvious changes in the expression of cytochrome P450, but increased the metabolic activity of hepatocytes compared to under static conditions. PFPE devices did not absorb midazolam, which was extensively absorbed by PDMS devices. However, the sorption of bufuralol could not be avoided even with PFPE devices. Solvent swelling experiments highlighted much better chemical repellency with PFPE than with PDMS. Hansen solubility parameters and sphere radius were estimated from the solvent swelling experiments. The relative energy distance (RED) of bufuralol to PFPE was much smaller than that of other three drugs tested, reasonably explaining the high sorption of bufuralol to PFPE. Although sorption into PFPE cannot be completely avoided, PFPE microfluidic devices may provide a better performance in ADMET evaluation than PDMS.


Subject(s)
Elastomers , Microfluidics , Rats , Animals , Elastomers/chemistry , Midazolam , Dimethylpolysiloxanes/chemistry , Solvents , Urea , Albumins
3.
Biol Pharm Bull ; 45(9): 1246-1253, 2022.
Article in English | MEDLINE | ID: mdl-36047192

ABSTRACT

Microfluidic devices are attracting attention for their ability to provide a biomimetic microenvironment wherein cells are arranged in a particular pattern and provided fluidic and mechanical forces. In this study, we evaluated drug transport across Caco-2 cell layers in microfluidic devices and investigated the effects of fluid flow on drug transport and metabolism. We designed a microfluidic device that comprises two blocks of polydimethylsiloxane and a sandwiched polyethylene terephthalate membrane with pores 3.0 µm in diameter. When cultured in a dynamic fluid environment, Caco-2 cells were multilayered and developed microvilli on the surface as compared with a static environment. Drugs with higher lipophilicity exhibited higher permeability across the Caco-2 layers, as well as in the conventional method using Transwells, and the fluidic conditions had little effect on permeability. In the Caco-2 cell layers cultured in Transwells and microfluidic devices, the basal-to-apical transport of rhodamine 123, a substrate of P-glycoprotein, was greater than the apical-to-basal transport, and the presence of tariquidar, an inhibitor of P-glycoprotein, completely diminished asymmetric transport. Furthermore, fluidic conditions promoted the metabolism of temocapril by carboxylesterases. On the other hand, we showed that fluidic conditions have little effect on gene expression of several transporters and metabolic enzymes. These results provide useful information regarding the application of microfluidic devices in drug transport and metabolism studies.


Subject(s)
Intestines , Lab-On-A-Chip Devices , ATP Binding Cassette Transporter, Subfamily B , Caco-2 Cells , Humans , Intestinal Absorption , Permeability
4.
J Toxicol Sci ; 47(8): 337-348, 2022.
Article in English | MEDLINE | ID: mdl-35922923

ABSTRACT

Drug-induced liver injury (DILI) is the main cause of failure in drug development and postapproval withdrawal. Although toxicogenomic techniques provide an unprecedented opportunity for mechanistic assessment and biomarker discovery, they are not suitable for the screening of large numbers of exploratory compounds in early drug discovery. Using a comprehensive analysis of toxicogenomics (TGx) data, we aimed to find DILI-relevant transcription factors (TFs) that could be incorporated into a reporter gene assay system. Gene set enrichment analysis (GSEA) of the Open TG-GATEs dataset highlighted 4 DILI-relevant TFs, including CREB, NRF2, ELK-1, and E2F. Using ten drugs with already assigned idiosyncratic toxicity (IDT) risks, reporter gene assays were conducted in HepG2 cells in the presence of the S9 mix. There were weak correlations between NRF2 activity and IDT risk, whereas strong correlations were observed between CREB activity and IDT risk. In addition, CREB activation associated with 3 Withdrawn/Black box Warning drugs was reversed by pretreatment with a PKA inhibitor. Collectively, we suggest that CREB might be a sensitive biomarker for DILI prediction, and its response to stress induced by high-risk drugs might be primarily regulated by the PKA/CREB signaling pathway.


Subject(s)
Chemical and Drug Induced Liver Injury , Cyclic AMP Response Element-Binding Protein/metabolism , NF-E2-Related Factor 2 , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/genetics , Gene Expression Profiling/methods , Humans , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Transcriptome
5.
PLoS One ; 16(8): e0255693, 2021.
Article in English | MEDLINE | ID: mdl-34347839

ABSTRACT

A method for predicting HIV drug resistance by using genotypes would greatly assist in selecting appropriate combinations of antiviral drugs. Models reported previously have had two major problems: lack of information on the 3D protein structure and processing of incomplete sequencing data in the modeling procedure. We propose obtaining the 3D structural information of viral proteins by using homology modeling and molecular field mapping, instead of just their primary amino acid sequences. The molecular field potential parameters reflect the physicochemical characteristics associated with the 3D structure of the proteins. We also introduce the Bayesian conditional mutual information theory to estimate the probabilities of occurrence of all possible protein candidates from an incomplete sequencing sample. This approach allows for the effective use of uncertain information for the modeling process. We applied these data analysis techniques to the HIV-1 protease inhibitor dataset and developed drug resistance prediction models with reasonable performance.


Subject(s)
Anti-HIV Agents/chemistry , Anti-HIV Agents/metabolism , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/metabolism , HIV Protease/chemistry , HIV Protease/metabolism , HIV-1/enzymology , Amino Acid Sequence , Bayes Theorem , Data Analysis , Genotype , HIV Infections/virology , HIV Protease/genetics , Humans , Machine Learning , Models, Chemical , Models, Molecular , Protein Conformation , Sequence Analysis, Protein/methods
6.
Yakugaku Zasshi ; 140(1): 1-6, 2020.
Article in Japanese | MEDLINE | ID: mdl-31902877

ABSTRACT

Dysesthesia is an unpleasant abnormal sensation, often accompanied by pain, paresthesia (abnormal sensation), and numbness (decrease or loss of sensation). Dysesthesia has been associated with various conditions, although its underlying mechanisms are largely unknown. This study assessed the roles of transient receptor potential ankyrin 1 (TRPA1) in dysesthesia by utilizing three animal models of dysesthesia characterized by reductions in blood flow to the skin: a transient hindlimb ischemia/reperfusion model, characterized by spontaneous licking and tactile hypoesthesia of the ischemic hindpaw; a streptozotocin-induced diabetic neuropathy model in mice, characterized by cold hypersensitivity, which is likely parallel to the reduced skin blood flow of the hindpaw; and a hindlimb ischemia model. TRPA1 inhibition or deficiency blocked spontaneous licking in the transient hindlimb ischemia/reperfusion model and cold hypersensitivity in the diabetic mouse model mice. Consistent with these results, the nocifensive behaviors induced by intraplantar injection of a TRPA1 agonist were enhanced in the diabetic neuropathy and hindlimb ischemia models. Hypoxia enhanced H2O2-induced TRPA1 responses in human TRPA1-expressing cells and cultured mouse dorsal root ganglion neurons, with this hypoxia-induced TRPA1 sensitization to H2O2 being associated with hypoxia-induced inhibition of the hydroxylation of prolyl hydroxylases. These results suggest that dysesthesia following blood flow reduction is caused by the activation of TRPA1 sensitized by hypoxia and that hypoxia-induced TRPA1 sensitization plays a pivotal role in painful dysesthesia induced by peripheral blood flow reduction.


Subject(s)
Paresthesia/genetics , TRPA1 Cation Channel/physiology , Animals , Diabetic Neuropathies , Disease Models, Animal , Humans , Hypoxia , Paresthesia/etiology , Paresthesia/physiopathology , Regional Blood Flow , Skin/blood supply , TRPA1 Cation Channel/metabolism
7.
Mol Pain ; 14: 1744806918789812, 2018.
Article in English | MEDLINE | ID: mdl-29968518

ABSTRACT

Background Diabetic peripheral neuropathy is a common long-term complication of diabetes. Accumulating evidence suggests that vascular impairment plays important roles in the pathogenesis of diabetic peripheral neuropathy, while the mechanism remains unclear. We recently reported that transient receptor potential ankyrin 1 (TRPA1) is sensitized by hypoxia, which can contribute to cold hypersensitivity. In this study, we investigated the involvement of TRPA1 and vascular impairment in painful diabetic peripheral neuropathy using streptozotocin-induced diabetic model mice. Results Streptozotocin-induced diabetic model mice showed mechanical and cold hypersensitivity with a peak at two weeks after the streptozotocin administration, which were likely to be paralleled with the decrease in the skin blood flow of the hindpaw. Streptozotocin-induced cold hypersensitivity was significantly inhibited by an antagonist HC-030031 (100 mg/kg) or deficiency for TRPA1, whereas mechanical hypersensitivity was unaltered. Consistent with these results, the nocifensive behaviors evoked by an intraplantar injection of the TRPA1 agonist allyl isothiocyanate (AITC) were enhanced two weeks after the streptozotocin administration. Both streptozotocin-induced cold hypersensitivity and the enhanced AITC-evoked nocifensive behaviors were significantly inhibited by a vasodilator, tadalafil (10 mg/kg), with recovery of the decreased skin blood flow. Similarly, in a mouse model of hindlimb ischemia induced by the ligation of the external iliac artery, AITC-evoked nocifensive behaviors were significantly enhanced three and seven days after the ischemic operation, whereas mechanical hypersensitivity was unaltered in TRPA1-knockout mice. However, no difference was observed between wild-type and TRPA1-knockout mice in the hyposensitivity for current or mechanical stimulation or the deceased density of intraepidermal nerve fibers eight weeks after the streptozotocin administration. Conclusion These results suggest that TRPA1 sensitization during diabetic vascular impairment causes cold, but not mechanical, hypersensitivity in the early painful phase of diabetic peripheral neuropathy. However, TRPA1 may play little or no role in the progression of diabetic peripheral neuropathy.


Subject(s)
Cryopyrin-Associated Periodic Syndromes/etiology , Diabetic Neuropathies/physiopathology , TRPA1 Cation Channel/metabolism , Vascular System Injuries/etiology , Acetanilides/pharmacology , Animals , Antibiotics, Antineoplastic/toxicity , Blood Glucose/drug effects , Blood Glucose/physiology , Body Weight/drug effects , Body Weight/physiology , Diabetic Neuropathies/chemically induced , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hindlimb/physiopathology , Ischemia/pathology , Isothiocyanates/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pain Threshold/drug effects , Purines/pharmacology , Skin/blood supply , Streptozocin/toxicity , TRPA1 Cation Channel/genetics
8.
Nat Commun ; 7: 12840, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27628562

ABSTRACT

Mammalian transient receptor potential ankyrin 1 (TRPA1) is a polymodal nociceptor that plays an important role in pain generation, but its role as a cold nociceptor is still controversial. Here, we propose that TRPA1 can sense noxious cold via transduction of reactive oxygen species (ROS) signalling. We show that inhibiting hydroxylation of a proline residue within the N-terminal ankyrin repeat of human TRPA1 by mutation or using a prolyl hydroxylase (PHD) inhibitor potentiates the cold sensitivity of TRPA1 in the presence of hydrogen peroxide. Inhibiting PHD in mice triggers mouse TRPA1 sensitization sufficiently to sense cold-evoked ROS, which causes cold hypersensitivity. Furthermore, this phenomenon underlies the acute cold hypersensitivity induced by the chemotherapeutic agent oxaliplatin or its metabolite oxalate. Thus, our findings provide evidence that blocking prolyl hydroxylation reveals TRPA1 sensitization to ROS, which enables TRPA1 to convert ROS signalling into cold sensitivity.


Subject(s)
Cryopyrin-Associated Periodic Syndromes/chemically induced , Cryopyrin-Associated Periodic Syndromes/metabolism , Prolyl-Hydroxylase Inhibitors/adverse effects , TRPA1 Cation Channel/metabolism , Animals , Antineoplastic Agents/adverse effects , Female , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Organoplatinum Compounds/adverse effects , Oxaliplatin , Primary Cell Culture , Reactive Oxygen Species/metabolism , TRPA1 Cation Channel/genetics
9.
Sci Rep ; 6: 23261, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26983498

ABSTRACT

Dysesthesia is an unpleasant abnormal sensation, which is often accompanied by peripheral neuropathy or vascular impairment. Here, we examined the roles of transient receptor potential ankyrin 1 (TRPA1) in dysesthesia-like behaviours elicited by transient hindlimb ischemia (15-60 min) by tightly compressing the hindlimb, and reperfusion by releasing the ligature. The paw-withdrawal responses to tactile stimulation were reduced during ischemia and lasted for a while after reperfusion. Hindlimb ischemia/reperfusion elicited spontaneous licking of the ischemic hindpaw that peaked within 10 min. The licking was inhibited by reactive oxygen species (ROS) scavengers, a TRPA1 antagonist, or TRPA1 deficiency, but not by TRPV1 deficiency. In human TRPA1-expressing cells as well as cultured mouse dorsal root ganglion neurons, the H2O2-evoked TRPA1 response was significantly increased by pretreatment with hypoxia (80 mmHg) for 30 min. This hypoxia-induced TRPA1 sensitisation to H2O2 was inhibited by overexpressing a catalytically-inactive mutant of prolyl hydroxylase (PHD) 2 or in a TRPA1 proline mutant resistant to PHDs. Consistent with these results, a PHD inhibitor increased H2O2-evoked nocifensive behaviours through TRPA1 activation. Our results suggest that transient hindlimb ischemia/reperfusion-evoked spontaneous licking, i.e. painful dysesthesia, is caused by ROS-evoked activation of TRPA1 sensitised by hypoxia through inhibiting PHD-mediated hydroxylation of a proline residue in TRPA1.


Subject(s)
Cell Hypoxia , Paresthesia/pathology , Transient Receptor Potential Channels/metabolism , Animals , Behavior, Animal , Calcium/metabolism , Cells, Cultured , Disease Models, Animal , Fluorometry , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , HEK293 Cells , Hindlimb/physiology , Humans , Hydrogen Peroxide/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Mutagenesis, Site-Directed , Paresthesia/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , TRPA1 Cation Channel , Transient Receptor Potential Channels/antagonists & inhibitors , Transient Receptor Potential Channels/deficiency , Transient Receptor Potential Channels/genetics
10.
J Pharmacol Sci ; 127(3): 237-43, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25837919

ABSTRACT

Recent evidence suggests a role of transient receptor potential melastatin 2 (TRPM2) in immune and inflammatory responses. We previously reported that TRPM2 deficiency attenuated inflammatory and neuropathic pain in some pain mouse models, including formalin- or carrageenan-induced inflammatory pain, and peripheral nerve injury-induced neuropathic pain models, while it had no effect on the basal mechanical and thermal nociceptive sensitivities. In this study, we further explored the involvement of TRPM2 in various pain models using TRPM2-knockout mice. There were no differences in the chemonociceptive behaviors evoked by intraplantar injection of capsaicin or hydrogen peroxide between wildtype and TRPM2-knockout mice, while acetic acid-induced writhing behavior was significantly attenuated in TRPM2-knockout mice. In the postoperative incisional pain model, no difference in mechanical allodynia was observed between the two genotypes. By contrast, mechanical allodynia in the monosodium iodoacetate-induced osteoarthritis pain model and the experimental autoimmune encephalomyelitis model were significantly attenuated in TRPM2-knockout mice. Furthermore, mechanical allodynia in paclitaxel-induced peripheral neuropathy and streptozotocin-induced painful diabetic neuropathy models were significantly attenuated in TRPM2-knockout mice. Taken together, these results suggest that TRPM2 plays roles in a wide range of pathological pain models based on peripheral and central neuroinflammation, rather than physiological nociceptive pain.


Subject(s)
Inflammation/genetics , Neuralgia/genetics , TRPM Cation Channels/physiology , Animals , Disease Models, Animal , Female , Male , Mice, Inbred C57BL , Mice, Knockout , TRPM Cation Channels/deficiency
11.
Yakugaku Zasshi ; 134(3): 379-86, 2014.
Article in Japanese | MEDLINE | ID: mdl-24584019

ABSTRACT

Neuropathic pain is a pathological pain condition that often results from peripheral nerve injury. Several lines of evidence suggest that neuroinflammation mediated by the interaction between immune cells and neurons plays an important role in the pathogenesis of neuropathic pain. Transient receptor potential melastatin 2 (TRPM2) is a nonselective Ca(2+)-permeable cation channel that acts as a sensor for reactive oxygen species. Recent evidence suggests that TRPM2 expressed on immune cells plays an important role in immune and inflammatory responses. In this study, we examined the roles of TRPM2 expressed on immune and glial cells in neuropathic pain. TRPM2 deficiency attenuated pain behaviors (mechanical allodynia, thermal hyperalgesia and spontaneous pain behaviors) in various kinds of inflammatory and neuropathic pain, but not in nociceptive pain models. In peripheral nerve injury-induced neuropathic pain models, TRPM2 deficiency diminished infiltration of neutrophils mediated through CXCL2 production from macrophages around the injured peripheral nerve and activation of spinal microglia, suggesting that TRPM2 expressed on macrophages and microglia aggravates peripheral and spinal pronociceptive inflammatory responses. Furthermore, we examined the infiltration of peripheral immune cells into the injured nerve and spinal cord using bone marrow chimeric mice by crossing wildtype and TRPM2-knockout mice. The results suggest that TRPM2 plays an important role in the infiltration of peripheral immune cells, particularly macrophages, into the spinal cord, rather than into the injured nerves. The spinal infiltration of macrophages mediated by TRPM2 may contribute to the pathogenesis of neuropathic pain.


Subject(s)
Neuralgia/metabolism , TRPM Cation Channels/metabolism , Animals , Bone Marrow Cells/metabolism , Disease Models, Animal , Humans , Microglia/metabolism
12.
J Pharmacol Sci ; 124(4): 514-7, 2014.
Article in English | MEDLINE | ID: mdl-24671055

ABSTRACT

Oxaliplatin, a platinum-based chemotherapeutic agent, causes an acute peripheral neuropathy triggered by cold in almost all patients during or within hours after its infusion. We recently reported that a single administration of oxaliplatin induced cold hypersensitivity 2 h after the administration in mice. In this study, we examined whether standard analgesics relieve the oxaliplatin-induced acute cold hypersensitivity. Gabapentin, tramadol, mexiletine, and calcium gluconate significantly inhibited and morphine and milnacipran decreased the acute cold hypersensitivity, while diclofenac and amitriptyline had no effects. These results suggest that gabapentin, tramadol, mexiletine, and calcium gluconate are effective against oxaliplatin-induced acute peripheral neuropathy.


Subject(s)
Analgesics/therapeutic use , Antineoplastic Agents/adverse effects , Cryopyrin-Associated Periodic Syndromes/chemically induced , Cryopyrin-Associated Periodic Syndromes/drug therapy , Organoplatinum Compounds/adverse effects , Acute Disease , Amines/therapeutic use , Animals , Calcium Gluconate/therapeutic use , Cyclohexanecarboxylic Acids/therapeutic use , Cyclopropanes/therapeutic use , Gabapentin , Male , Mexiletine/therapeutic use , Mice , Mice, Inbred C57BL , Milnacipran , Morphine/therapeutic use , Oxaliplatin , Tramadol/therapeutic use , gamma-Aminobutyric Acid/therapeutic use
13.
J Pharmacol Sci ; 124(2): 244-57, 2014.
Article in English | MEDLINE | ID: mdl-24492463

ABSTRACT

The acute analgesic effect of tramadol has been extensively investigated; however, its long-term effect on neuropathic pain has not been well clarified. In this study, we examined the effects of repeated administration of tramadol on partial sciatic nerve ligation-induced neuropathic pain in rats. Each drug was administered once daily from 0 - 6 days (preventive effect) or 7 - 14 days (alleviative effect) after the surgery. Mechanical allodynia was evaluated just before (preventive or alleviative effect) and 1 h after (analgesic effect) drug administration. Like morphine, first administration of tramadol (20 mg/kg) showed an acute analgesic effect on the developed mechanical allodynia, which was diminished by naloxone. Like amitriptyline, repeated administration of tramadol showed preventive and alleviative effects on the mechanical allodynia that was diminished by yohimbine, but not naloxone. The alleviative effects of tramadol lasted even after drug cessation or in the presence of yohimbine. Repeated administration of tramadol increased the dopamine ß-hydroxylase immunoreactivity in the spinal cord. Furthermore, tramadol inhibited the nerve ligation-induced activation of spinal astrocytes, which was reduced by yohimbine. These results suggest that tramadol has both µ-opioid receptor-mediated acute analgesic and α2-adrenoceptor-mediated preventive and alleviative effects on neuropathic pain, and the latter is due to α2-adrenoceptor-mediated inhibition of astrocytic activation.


Subject(s)
Analgesics, Opioid/administration & dosage , Astrocytes/pathology , Neuralgia/drug therapy , Neuralgia/prevention & control , Receptors, Adrenergic, alpha-2/physiology , Spinal Cord/cytology , Tramadol/administration & dosage , Analgesics, Opioid/pharmacology , Animals , Disease Models, Animal , Dopamine beta-Hydroxylase/metabolism , Hyperalgesia/drug therapy , Male , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu , Spinal Cord/enzymology , Tramadol/pharmacology
15.
PLoS One ; 8(7): e66410, 2013.
Article in English | MEDLINE | ID: mdl-23935822

ABSTRACT

Recent evidence suggests that transient receptor potential melastatin 2 (TRPM2) expressed in immune cells plays an important role in immune and inflammatory responses. We recently reported that TRPM2 expressed in macrophages and spinal microglia contributes to the pathogenesis of inflammatory and neuropathic pain aggravating peripheral and central pronociceptive inflammatory responses in mice. To further elucidate the contribution of TRPM2 expressed by peripheral immune cells to neuropathic pain, we examined the development of peripheral nerve injury-induced neuropathic pain and the infiltration of immune cells (particularly macrophages) into the injured nerve and spinal cord by using bone marrow (BM) chimeric mice by crossing wildtype (WT) and TRPM2-knockout (TRPM2-KO) mice. Four types of BM chimeric mice were prepared, in which irradiated WT or TRPM2-KO recipient mice were transplanted with either WT-or TRPM2-KO donor mouse-derived green fluorescence protein-positive (GFP(+)) BM cells (TRPM2(BM+/Rec+), TRPM2(BM-/Rec+), TRPM2(BM+/Rec-), and TRPM2(BM-/Rec-) mice). Mechanical allodynia induced by partial sciatic nerve ligation observed in TRPM2(BM+/Rec+) mice was attenuated in TRPM2(BM-/Rec+), TRPM2(BM+/Rec-), and TRPM2(BM-/Rec-) mice. The numbers of GFP(+) BM-derived cells and Iba1/GFP double-positive macrophages in the injured sciatic nerve did not differ among chimeric mice 14 days after the nerve injury. In the spinal cord, the number of GFP(+) BM-derived cells, particularly GFP/Iba1 double-positive macrophages, was significantly decreased in the three TRPM2-KO chimeric mouse groups compared with TRPM2(BM+/Rec+) mice. However, the numbers of GFP(-)/Iba1(+) resident microglia did not differ among chimeric mice. These results suggest that TRPM2 plays an important role in the infiltration of peripheral immune cells, particularly macrophages, into the spinal cord, rather than the infiltration of peripheral immune cells into the injured nerves and activation of spinal-resident microglia. The spinal infiltration of macrophages mediated by TRPM2 may contribute to the pathogenesis of neuropathic pain.


Subject(s)
Neuralgia/etiology , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/genetics , Spinal Cord/pathology , TRPM Cation Channels/genetics , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Chimera , Disease Models, Animal , Hyperalgesia/etiology , Male , Mice , Mice, Knockout , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Peripheral Nerve Injuries/immunology , Peripheral Nerve Injuries/metabolism , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Spinal Cord/immunology , Spinal Cord/metabolism , TRPM Cation Channels/metabolism
16.
J Biol Chem ; 282(14): 10290-8, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17283069

ABSTRACT

In previous studies it was demonstrated that sterol regulatory element-binding proteins (SREBPs) are able to interact with one of the nuclear receptors, hepatocyte nuclear receptor (HNF)-4, and that this interaction regulates transcriptional activities of these proteins (Misawa, K., Horiba, T., Arimura, N., Hirano, Y., Inoue, J., Emoto, N., Shimano, H., Shimizu, M., and Sato, R. (2003) J. Biol. Chem. 278, 36176-36182; Yamamoto, T., Shimano, H., Nakagawa, Y., Ide, T., Yahagi, N., Matsuzaka, T., Nakakuki, M., Takahashi, A., Suzuki, H., Sone, H., Toyoshima, H., Sato, R., and Yamada, N. (2004) J. Biol. Chem. 279, 12027-12035). In an attempt to identify other nuclear receptor family members affecting the SREBP transcriptional activities, we found that the liver receptor homolog (LRH)-1 suppresses them. Several types of luciferase assays revealed that coexpression of these two proteins (LRH-1 and SREBP-1a, -1c, or -2) results in reciprocal inhibition of the transcriptional activity of each protein. It was confirmed that suppression in endogenous LRH-1 by small interference RNA stimulates the mRNA levels of certain SREBP target genes and that elevation in active SREBPs in the nucleus in response to cholesterol depletion suppresses the LRH-1 activity. In vitro/in vivo glutathione S-transferase pulldown experiments demonstrated that the basic helix-loop-helix-leucine zipper domain in SREBP-2 binds to the ligand-binding domain in LRH-1. Furthermore, we found that SREBP-2 interferes with the recruitment of a coactivator of LRH-1, the peroxisome proliferator-activated receptor gamma coactivator-1alpha, thereby leading to the inhibition of the LRH-1 transcriptional activity. These results clearly indicate that the interaction between SREBPs and LRH-1 exerts a suppressive influence on their target gene expression responsible for cholesterol and bile acid metabolism.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation/physiology , Receptors, Cytoplasmic and Nuclear/metabolism , Regulatory Elements, Transcriptional/physiology , Sterol Regulatory Element Binding Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/physiology , Bile/metabolism , Cell Line, Tumor , Cholesterol/metabolism , DNA-Binding Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Protein Binding/physiology , Protein Structure, Tertiary/physiology , Receptors, Cytoplasmic and Nuclear/genetics , Sterol Regulatory Element Binding Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL