Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38848019

ABSTRACT

Lipids are a diverse group of compounds that play several important roles in insect physiology. Among biological lipids, the fundamental category comprises fatty acyl structures, with significant members being fatty acids (FAs). They play several crucial functions in insect physiology; they are used as the source of energy for flight and play key roles in the insect immune system. The FAs present in the insect cuticle are known to demonstrate antibacterial and antifungal activity and are considered as potential insecticides. The most abundant family of lipids are the glycerolipids, with numerous cellular functions including storage of energy, structural compartmentation of cells and organelles, and important signaling activities required for regulation of physiological processes (i.e., growth, development, reproduction, diapause, and overwintering). The phospholipids are also highly diversified key components of all cell membranes; they can modify cellular components in response to rapid cold-hardening (RCH), enhancing membrane fluidity and improving survival at low temperatures. The sphingolipids are important structural and signaling bioactive compounds, mostly detected in membranes.Insects are sterol-auxotrophs: they do not have genes, which code enzymes converting farnesyl pyrophosphate to squalene. Similarly, to mammals, the production of steroids in insects is regulated by cytochrome P450 enzymes that convert sterols (mostly cholesterol) to hormonally active steroids. The major molting hormone in insects is 20-hydroxyecdysone, and cholesterol is the required precursor; however, several exemptions from this rule have been noted. This manuscript also reviews the roles of prenol lipids, isoprenoids, lipid vitamins, polyketides, and waxes in the vital processes of insects.

2.
Front Immunol ; 15: 1385863, 2024.
Article in English | MEDLINE | ID: mdl-38774871

ABSTRACT

Background: In response to the replace mammal research models with insects in preliminary immunological studies, interest has grown in invertebrate defense systems. The immunological response is regulated by cytokines; however, while their role in mammals is well understood, little is known of their function in insects. A suitable target for studies into insect immunology is Galleria mellonella (Lepidoptera), the wax moth: a common host for human fungal and bacterial pathogens. G. mellonella is also a perfect subject for studies into the presence of cytokine-like proteins. Specific objectives: The main goal of present research was detection in insect immunocompetent cells the 18 mammalian cytokines (IL-1α, IL-1ß, IL-2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-γ, TNF-α, TNF-ß, GM-CSF, M-CSF, G-CSF), which play important role in immunological response and indication how their level change after fungal infection. Methodology: The changes of cytokine-like proteins level were detected in hemocytes taken from G. mellonella larvae infected with entomopathogenic fungus, C. coronatus. The presence of cytokine-proteins was confirmed with using fluorescence microscopy (in cultured hemocytes) and flow cytometry (in freshly collected hemolymph). The ELISA test was used to detect changes in concentration of examined cytokine-like proteins. Results: Our findings indicated the presence of eighteen cytokine-like molecules in G. mellonella hemocytes during infection with C. coronatus. The hemocytes taken from infected larvae demonstrated higher fluorescence intensity for six cytokine-like proteins (GM-CSF, M-CSF, IL-3, IL-15, IL-1ß and IL-19) compared to untreated controls. ELISA test indicated significantly higher IL-3 and IL-15. M-CSF, IL-1α and IL-19 concentration in the hemolymph after fungal infection, and significantly lower TNF-ß and G-CSF. Conclusions: Our findings confirm that the selected cytokine-like molecules are present in insect hemocytes and that their concentrations change after fungal infection, which might suggest that they play a role in the anti-fungal immunological response.


Subject(s)
Conidiobolus , Cytokines , Larva , Moths , Animals , Conidiobolus/immunology , Larva/immunology , Larva/microbiology , Cytokines/metabolism , Cytokines/immunology , Moths/immunology , Moths/microbiology , Hemocytes/immunology , Hemocytes/metabolism , Hemocytes/microbiology , Insect Proteins/immunology , Insect Proteins/metabolism , Zygomycosis/immunology , Zygomycosis/metabolism
3.
PLoS One ; 17(9): e0274120, 2022.
Article in English | MEDLINE | ID: mdl-36173940

ABSTRACT

Invertebrates are becoming increasingly popular models for research on the immune system. The innate immunity possessed by insects shows both structural and functional similarity to the resistance displayed by mammals, and many processes occurring in insect hemocytes are similar to those that occur in mammals. However, the use of insects as research models requires the development of methods for working with hemocytes. The aim of this study was to develop a protocol for intracellular cytokine detection in Galleria mellonella larvae hemocytes based on flow cytometry. It describes the anticoagulant composition of the buffer, the optimal conditions for hemocyte permeabilization and fixation, as well as the conditions of cell centrifugation to prevent cell disintegration. A key element is the selection of staining conditions, especially the length of the incubation time with the primary antibody, which turned out to be much longer than recommended for mammalian cells. The development of these individual steps allowed for the creation of a reproducible protocol for cytokine detection using flow cytometry in wax moth hemocytes. This will certainly facilitate the development of further protocols allowing for wider use of insect cells in immunological research.


Subject(s)
Hemocytes , Moths , Animals , Anticoagulants , Cytokines , Flow Cytometry , Larva , Mammals
4.
Sci Rep ; 12(1): 13641, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948615

ABSTRACT

Mycoses are a global problem that affects humans and animals. In the present study, the entomopathogenic soil fungus Conidiobolus coronatus (Entomophthorales), infecting in tropics also humans, sheep and horses, was cultivated with the addition of insect cuticular compounds (CCs) previously detected in the cuticle of C. coronatus-resistant fly species (C10-C30 fatty alcohols, butyl oleate, butyl stearate, glycerol oleate, squalene, tocopherol acetate). Our findings indicate that CCs have diversified and complex effects on the growth and sporulation of C. coronatus and its ability to infect the larvae of Galleria mellonella (Lepidoptera). The CCs affected protein content and cuticle-degrading enzymes (CDEs) activity in the conidia. Some CCs inhibited fungal growth (0.1% C10), decreased sporulation (C12, C16, C24, C28, C30, butyl stearate, squalene), virulence (C12, C14, butyl oleate, butyl stearate) and protein content (C18). They also reduced conidial CDE activity: elastase (C24, butyl oleate, butyl stearate, squalene, tocopherol acetate), chitobiosidase (C12, C14, C20) and lipase (C12, C18, C26, squalene, tocopherol acetate). Several CCs enhanced sporulation (C14, C18, C22, C26, C30), virulence (C18, C26, squalene), conidial protein content (C16, C24, C30, squalene) and CDE activity: elastase (C10, C16, C18), NAGase (C16, C20), chitobiosidase (C16) and lipase (C10, C14, C16, C20, butyl oleate). Our findings indicate that C. coronatus colonies grown on media supplemented with CCs employ various compensation strategies: colonies grown with C16 alcohol demonstrated reduced sporulation but greater conidial protein accumulation and increased elastase, NAGase, chitobiosidase and lipase activity, thus preserving high virulence. Also, colonies supplemented with C18 alcohol demonstrated high virulence and enhanced sporulation and elastase activity but slightly decreased conidial protein content. CCs that inhibit the activity of lipases and proteases show promise in the fight against conidiobolomycosis.


Subject(s)
Moths , Zygomycosis , Acetylglucosaminidase/metabolism , Animals , Conidiobolus , Fatty Acids/metabolism , Horses , Humans , Insecta/metabolism , Lipase/metabolism , Oleic Acid/metabolism , Oleic Acid/pharmacology , Pancreatic Elastase/metabolism , Sheep , Spores, Fungal/metabolism , Squalene/metabolism , alpha-Tocopherol/metabolism
5.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800923

ABSTRACT

A homo-dimeric enzyme, thymidylate synthase (TS), has been a long-standing molecular target in chemotherapy. To further elucidate properties and interactions with ligands of wild-type mouse thymidylate synthase (mTS) and its two single mutants, H190A and W103G, spectroscopic and theoretical investigations have been employed. In these mutants, histidine at position 190 and tryptophan at position 103 are substituted with alanine and glycine, respectively. Several emission-based spectroscopy methods used in the paper demonstrate an especially important role for Trp 103 in TS ligands binding. In addition, the Advanced Poisson-Boltzmann Solver (APBS) results show considerable differences in the distribution of electrostatic potential around Trp 103, as compared to distributions observed for all remaining Trp residues in the mTS family of structures. Together, spectroscopic and APBS results reveal a possible interplay between Trp 103 and His190, which contributes to a reduction in enzymatic activity in the case of H190A mutation. Comparison of electrostatic potential for mTS complexes, and their mutants, with the substrate, dUMP, and inhibitors, FdUMP and N4-OH-dCMP, suggests its weaker influence on the enzyme-ligand interactions in N4OH-dCMP-mTS compared to dUMP-mTS and FdUMP-mTS complexes. This difference may be crucial for the explanation of the "abortive reaction" inhibitory mechanism of N4OH-dCMP towards TS. In addition, based on structural analyses and the H190A mutant capacity to form a denaturation-resistant complex with N4-OH-dCMP in the mTHF-dependent reaction, His190 is apparently responsible for a strong preference of the enzyme active center for the anti rotamer of the imino inhibitor form.


Subject(s)
Deoxyuracil Nucleotides/metabolism , Models, Theoretical , Spectrometry, Fluorescence/methods , Static Electricity , Thymidylate Synthase/metabolism , Amino Acid Substitution , Animals , Deoxycytidine Monophosphate/analogs & derivatives , Deoxycytidine Monophosphate/metabolism , Deoxyuracil Nucleotides/chemistry , Fluorodeoxyuridylate/metabolism , Mice , Models, Molecular , Multivariate Analysis , Protein Conformation , Thymidylate Synthase/chemistry
6.
Molecules ; 25(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32586022

ABSTRACT

With the aim to identify novel inhibitors of parasitic nematode thymidylate synthase (TS), we screened in silico an in-house library of natural compounds, taking advantage of a model of nematode TS three-dimensional (3D) structure and choosing candidate compounds potentially capable of enzyme binding/inhibition. Selected compounds were tested as (i) inhibitors of the reaction catalyzed by TSs of different species, (ii) agents toxic to a nematode parasite model (C. elegans grown in vitro), (iii) inhibitors of normal human cell growth, and (iv) antitumor agents affecting human tumor cells grown in vitro. The results pointed to alvaxanthone as a relatively strong TS inhibitor that causes C. elegans population growth reduction with nematocidal potency similar to the anthelmintic drug mebendazole. Alvaxanthone also demonstrated an antiproliferative effect in tumor cells, associated with a selective toxicity against mitochondria observed in cancer cells compared to normal cells.


Subject(s)
Antinematodal Agents/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Thymidylate Synthase/antagonists & inhibitors , Xanthones/pharmacology , Adenosine Triphosphate/metabolism , Animals , Caenorhabditis elegans/drug effects , Caspase 3/metabolism , Caspase 7/metabolism , Cell Adhesion/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Small Molecule Libraries , Thymidylate Synthase/metabolism , Toxicity Tests , Xanthones/chemistry
7.
Arch Biochem Biophys ; 674: 108106, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31520592

ABSTRACT

In view of previous crystallographic studies, N4-hydroxy-dCMP, a slow-binding thymidylate synthase inhibitor apparently caused "uncoupling" of the two thymidylate synthase-catalyzed reactions, including the N5,10-methylenetetrahydrofolate one-carbon group transfer and reduction, suggesting the enzyme's capacity to use tetrahydrofolate as a cofactor reducing the pyrimidine ring C(5) in the absence of the 5-methylene group. Testing the latter interpretation, a possibility was examined of a TS-catalyzed covalent self-modification/self-inactivation with certain pyrimidine deoxynucleotides, including 5-fluoro-dUMP and N4-hydroxy-dCMP, that would be promoted by tetrahydrofolate and accompanied with its parallel oxidation to dihydrofolate. Electrophoretic analysis showed mouse recombinant TS protein to form, in the presence of tetrahydrofolate, a covalently bound, electrophoretically separable 5-fluoro-dUMP-thymidylate synthase complex, similar to that produced in the presence of N5,10-methylenetetrahydrofolate. Further studies of the mouse enzyme binding with 5-fluoro-dUMP/N4-hydroxy-dCMP by TCA precipitation of the complex on filter paper showed it to be tetrahydrofolate-promoted, as well as to depend on both time in the range of minutes and the enzyme molecular activity, indicating thymidylate synthase-catalyzed reaction to be responsible for it. Furthermore, the tetrahydrofolate- and time-dependent, covalent binding by thymidylate synthase of each 5-fluoro-dUMP and N4-hydroxy-dCMP was shown to be accompanied by the enzyme inactivation, as well as spectrophotometrically confirmed dihydrofolate production, the latter demonstrated to depend on the reaction time, thymidylate synthase activity and temperature of the incubation mixture, further documenting its catalytic character.


Subject(s)
Fluorodeoxyuridylate/metabolism , Tetrahydrofolates/metabolism , Thymidylate Synthase/metabolism , Animals , Deoxycytidine Monophosphate/analogs & derivatives , Deoxycytidine Monophosphate/metabolism , Enzyme Inhibitors/metabolism , Folic Acid/analogs & derivatives , Folic Acid/metabolism , Mice , Protein Binding , Spectrophotometry, Ultraviolet
8.
Eur J Pharmacol ; 863: 172678, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31542481

ABSTRACT

α-Mangostin, one of the major xanthones isolated from pericarp of mangosteen (Garcinia mangostana Linn), exhibits a wide range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial as well as anticancer, both in in vitro and in vivo studies. In the present study, α-mangostin' anti-cancer and anti-parasitic properties were tested in vitro against three human cell lines, including squamous carcinoma (SCC-15) and glioblastoma multiforme (U-118 MG), compared to normal skin fibroblasts (BJ), and in vivo against Caenorhabditis elegans. The drug showed cytotoxic activity, manifested by decrease of cell viability, inhibition of proliferation, induction of apoptosis and reduction of adhesion at concentrations lower than 10 µM (the IC50 values were 6.43, 9.59 and 8.97 µM for SCC-15, U-118 MG and BJ, respectively). The toxicity, causing cell membrane disruption and mitochondria impairment, was selective against squamous carcinoma with regard to normal cells. Moreover, for the first time anti-nematode activity of α-mangostin toward C. elegans was described (the LC50 = 3.8 ±â€¯0.5 µM), with similar effect exerted by mebendazole, a well-known anthelmintic drug.


Subject(s)
Antinematodal Agents/pharmacology , Antineoplastic Agents/pharmacology , Xanthones/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antinematodal Agents/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Caenorhabditis elegans/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Inhibitory Concentration 50 , Xanthones/chemistry
9.
Biomed Pharmacother ; 95: 749-755, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28888921

ABSTRACT

Glioblastoma multiforme (GBM) is a central nervous system tumor of grade IV, according to the WHO classification, extremely resistant to all currently used forms of therapy, including resection, radiotherapy, chemotherapy or combined therapy. Therefore, more effective treatment strategies of this tumor are needed, with boron neutron capture therapy (BNCT) being a potential solution, provided a proper cancer cells-targeted 10B delivery agent is found. In search of such an agent, toxicity and capacity to target DNA of a boronated derivative of 2'-deoxycytidine, N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2'-deoxycytidine (1), was tested against human tumor vs. normal cells. The present in vitro results revealed 1 to show low toxicity for human U-118 MG glioma cells (in the mM range) and even by 3-4 - fold lower against normal human fibroblasts. In accord, induction of apoptosis dependent on caspase-3 and caspase-7 was detected at high (>20mM) concentration of 1. Although demonstrated to be susceptible to phosphorylation by human deoxycytidine kinase and to undergo incorporation in cellular DNA, the boron analogue did not disturb cell proliferation when applied at non-toxic concentrations and showed low toxicity to a model metazoan organism, Caenorhabditis elegans. Thus, N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2'-deoxycytidine appears a promising candidate for a 10B delivery agent to be used in BNCT, with C. elegans indicated as a good model for in vivo studies.


Subject(s)
Boron Compounds/therapeutic use , Boron/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Animals , Apoptosis/drug effects , Boron/pharmacology , Boron Compounds/chemistry , Brain Neoplasms/pathology , Caenorhabditis elegans/drug effects , Cell Count , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , DNA/metabolism , Deoxycytidine , Glioblastoma/pathology , Mass Spectrometry , Models, Animal , Substrate Specificity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL