Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mil Med Res ; 11(1): 61, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169440

ABSTRACT

BACKGROUND: Chronic Gulf War Illness (GWI) is characterized by cognitive and mood impairments, as well as persistent neuroinflammation and oxidative stress. This study aimed to investigate the efficacy of Epidiolex®, a Food and Drug Administration (FDA)-approved cannabidiol (CBD), in improving brain function in a rat model of chronic GWI. METHODS: Six months after exposure to low doses of GWI-related chemicals [pyridostigmine bromide, N,N-diethyl-meta-toluamide (DEET), and permethrin (PER)] along with moderate stress, rats with chronic GWI were administered either vehicle (VEH) or CBD (20 mg/kg, oral) for 16 weeks. Neurobehavioral tests were conducted on 11 weeks after treatment initiation to evaluate the performance of rats in tasks related to associative recognition memory, object location memory, pattern separation, and sucrose preference. The effect of CBD on hyperalgesia was also examined. The brain tissues were processed for immunohistochemical and molecular studies following behavioral tests. RESULTS: GWI rats treated with VEH exhibited impairments in all cognitive tasks and anhedonia, whereas CBD-treated GWI rats showed improvements in all cognitive tasks and no anhedonia. Additionally, CBD treatment alleviated hyperalgesia in GWI rats. Analysis of hippocampal tissues from VEH-treated rats revealed astrocyte hypertrophy and increased percentages of activated microglia presenting NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) complexes as well as elevated levels of proteins involved in NLRP3 inflammasome activation and Janus kinase/signal transducers and activators of the transcription (JAK/STAT) signaling. Furthermore, there were increased concentrations of proinflammatory and oxidative stress markers along with decreased neurogenesis. In contrast, the hippocampus from CBD-treated GWI rats displayed reduced levels of proteins mediating the activation of NLRP3 inflammasomes and JAK/STAT signaling, normalized concentrations of proinflammatory cytokines and oxidative stress markers, and improved neurogenesis. Notably, CBD treatment did not alter the concentration of endogenous cannabinoid anandamide in the hippocampus. CONCLUSIONS: The use of an FDA-approved CBD (Epidiolex®) has been shown to effectively alleviate cognitive and mood impairments as well as hyperalgesia associated with chronic GWI. Importantly, the improvements observed in rats with chronic GWI in this study were attributed to the ability of CBD to significantly suppress signaling pathways that perpetuate chronic neuroinflammation.


Subject(s)
Cannabidiol , Cognitive Dysfunction , Hyperalgesia , Neurogenesis , Neuroinflammatory Diseases , Persian Gulf Syndrome , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Rats , Persian Gulf Syndrome/drug therapy , Persian Gulf Syndrome/complications , Male , Hyperalgesia/drug therapy , Neuroinflammatory Diseases/drug therapy , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Neurogenesis/drug effects , Disease Models, Animal , Rats, Sprague-Dawley , Signal Transduction/drug effects , Mood Disorders/drug therapy , Oxidative Stress/drug effects , Hippocampus/drug effects , Pyridostigmine Bromide/pharmacology , Pyridostigmine Bromide/therapeutic use
2.
bioRxiv ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39071343

ABSTRACT

Chronic neuroinflammation represents a prominent hallmark of Alzheimer's disease (AD). While moderately activated microglia are pivotal in clearing amyloid beta (Aß), hyperactivated microglia perpetuate neuroinflammation. Prior investigations have indicated that the elimination of ∼80% of microglia through a month-long inhibition of the colony-stimulating factor 1 receptor (CSF1R) during the advanced stage of neuroinflammation in 5xFamilial AD (5xFAD) mice mitigates synapse loss and neurodegeneration without impacting Aß levels. Furthermore, prolonged CSF1R inhibition diminished the development of parenchymal plaques. Nonetheless, the immediate effects of short-term CSF1R inhibition during the early stages of neuroinflammation on residual microglial phenotype or metabolic fitness are unknown. Therefore, we investigated the effects of 10-day CSF1R inhibition in three-month-old female 5xFAD mice, a stage characterized by the onset of neuroinflammation and minimal Aß plaques. We observed ∼65% microglia depletion in the hippocampus and cerebral cortex. The leftover microglia demonstrated a noninflammatory phenotype, with highly branched and ramified processes and reduced NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complexes. Moreover, plaque-associated microglia were reduced in number with diminished Clec7a (dectin-1) expression. Additionally, both microglia and neurons displayed reduced mechanistic target of rapamycin (mTOR) signaling and autophagy. Biochemical assays validated the inhibition of NLRP3 inflammasome activation, decreased mTOR signaling, and enhanced autophagy. However, short-term CSF1R inhibition did not influence Aß plaques, soluble Aß-42 levels, or hippocampal neurogenesis. Thus, short-term CSF1R inhibition during the early stages of neuroinflammation in 5xFAD mice promotes the retention of homeostatic microglia with diminished inflammasome activation and mTOR signaling, alongside increased autophagy.

3.
bioRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293018

ABSTRACT

Antiinflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for Alzheimer's disease (AD). This study directly addressed this issue by examining the effects of intranasal administrations of hiPSC-NSC-EVs to 3-month-old 5xFAD mice. The EVs were internalized by all microglia, which led to reduced expression of multiple genes associated with disease-associated microglia, inflammasome, and interferon-1 signaling. Furthermore, the effects of hiPSC-NSC-EVs persisted for two months post-treatment in the hippocampus, evident from reduced microglial clusters, inflammasome complexes, and expression of proteins and/or genes linked to the activation of inflammasomes, p38/mitogen-activated protein kinase, and interferon-1 signaling. The amyloid-beta (Aß) plaques, Aß-42, and phosphorylated-tau concentrations were also diminished, leading to better cognitive and mood function in 5xFAD mice. Thus, early intervention with hiPSC-NSC-EVs in AD may help maintain better brain function by restraining the progression of adverse neuroinflammatory signaling cascades.

4.
J Neuroinflammation ; 20(1): 297, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087314

ABSTRACT

Extracellular vesicles (EVs) released by human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs) are enriched with miRNAs and proteins capable of mediating robust antiinflammatory activity. The lack of tumorigenic and immunogenic properties and ability to permeate the entire brain to incorporate into microglia following intranasal (IN) administrations makes them an attractive biologic for curtailing chronic neuroinflammation in neurodegenerative disorders. We tested the hypothesis that IN administrations of hiPSC-NSC-EVs can alleviate chronic neuroinflammation and cognitive impairments induced by the peripheral lipopolysaccharide (LPS) challenge. Adult male, C57BL/6J mice received intraperitoneal injections of LPS (0.75 mg/kg) for seven consecutive days. Then, the mice received either vehicle (VEH) or hiPSC-NSC-EVs (~ 10 × 109 EVs/administration, thrice over 6 days). A month later, mice in all groups were investigated for cognitive function with behavioral tests and euthanized for histological and biochemical studies. Mice receiving VEH after LPS displayed deficits in associative recognition memory, temporal pattern processing, and pattern separation. Such impairments were associated with an increased incidence of activated microglia presenting NOD-, LRR-, and pyrin domain containing 3 (NLRP3) inflammasomes, elevated levels of NLRP3 inflammasome mediators and end products, and decreased neurogenesis in the hippocampus. In contrast, the various cognitive measures in mice receiving hiPSC-NSC-EVs after LPS were closer to naive mice. Significantly, these mice displayed diminished microglial activation, NLRP3 inflammasomes, proinflammatory cytokines, and a level of neurogenesis matching age-matched naïve controls. Thus, IN administrations of hiPSC-NSC-EVs are an efficacious approach to reducing chronic neuroinflammation-induced cognitive impairments.


Subject(s)
Cognitive Dysfunction , Extracellular Vesicles , Induced Pluripotent Stem Cells , Neural Stem Cells , Humans , Mice , Male , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Induced Pluripotent Stem Cells/metabolism , Neuroinflammatory Diseases , Lipopolysaccharides/pharmacology , Mice, Inbred NOD , Mice, Inbred C57BL , Inflammation/metabolism , Extracellular Vesicles/metabolism , Microglia/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism , Neural Stem Cells/metabolism , Hippocampus/metabolism , Neurogenesis
5.
J Comp Pathol ; 201: 53-56, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36709728

ABSTRACT

Reports of compound odontomas in rats are very rare. A 14-month-old adult male Sprague Dawley rat was found to have a hard mass associated with the caudal aspect of the left mandible. After 2 weeks of observation, the rat was euthanized due to the mass growing significantly in size and the rat losing >20% of its body weight. Grossly, the mass was well-circumscribed, 3.7 × 3 × 1.2 cm, hard and heterogeneously coloured white, tan and red. The mass was restricted to the mandibular bone and did not involve surrounding subcutaneous tissue. On cut surface, the mass was a similar colour and brittle. Histologically, there were numerous proto-teeth embedded in ossified stroma. Each proto-tooth had a central mesenchyme pulp surrounded by columnar odontoblasts and dentine matrix. The dentine was often bordered by enamel matrix, which was occasionally bounded by ameloblasts. These histological findings were consistent with a compound odontoma. This is the first report of a spontaneous compound odontoma in the caudal mandible of a rat.


Subject(s)
Odontoma , Rodent Diseases , Male , Rats , Animals , Odontoma/veterinary , Rats, Sprague-Dawley , Mandible/pathology
6.
Ageing Res Rev ; 78: 101637, 2022 06.
Article in English | MEDLINE | ID: mdl-35504553

ABSTRACT

Strategies proficient for relieving cognitive impairments in aging and Alzheimer's disease (AD) have an enormous impact. Regular physical exercise (PE) can prevent age-related dementia and slow down AD progression. However, such a lifestyle change is likely not achievable for individuals displaying age-related frailty. Hence, drugs or biologics that could simulate the benefits of PE have received much attention. Previous studies suggested that the fibronectin-domain III containing 5 (FNDC5) underlies the PE-mediated improved cognitive function. A recent study reports that PE-related cognitive benefits in aging and AD are mediated by irisin, the cleaved form of FNDC5 released into the blood after PE. Such a conclusion was apparent from the deletion of irisin through a global knockout of FNDC5, leading to the loss of PE-induced cognitive benefits or inducing memory impairments in adult or aged models. Furthermore, in AD models, peripherally administered irisin mimicked the cognitive benefits of PE by modulating neuroinflammation. This short review discusses the promise of irisin to simulate the cognitive benefits of PE in age- and AD-related dementia. In addition, critical issues such as how blood-borne irisin acts on neural cells, the role of the brain-derived neurotrophic factor in irisin-mediated cognitive benefits, and irisin's ability to inhibit neuroinflammatory cascades in aging and AD are discussed.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Aging , Alzheimer Disease/therapy , Cognition , Cognitive Dysfunction/therapy , Fibronectins , Humans , Memory Disorders
7.
ACS Omega ; 7(6): 5131-5138, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35187328

ABSTRACT

Engineering therapeutic proteins to improve their half-life so as to sustain physiologically relevant extended activity is the need of the hour in biopharmaceutical research. In this study, insulin and bovine serum albumin (BSA) were independently functionalized rationally and were later conjugated to prolong the half-life of insulin. The thiol functionalization of BSA with 2-imminothiolane in the ratio 1:20 yielded an average of 6-8 thiols/BSA, which then reacted with maleimide-functionalized insulin to form an insulin-albumin conjugate. The bioconjugate was purified by size exclusion chromatography, and the increase in size was confirmed by sodium dodecyl-sulfate polyacrylamide gel electrophoresis. Bioconjugation resulted in a multi-fold increase in the hydrodynamic volume of the insulin-albumin conjugate as measured in DLS when compared to BSA. The glucose uptake assay with 3LT3-L1 cell lines was performed, and the mean fluorescence intensity (MFI) of 16.16 observed for the insulin-albumin conjugate was comparable to insulin (19.42). The blood glucose reducing capacity of the insulin-albumin conjugate in streptozotocin induced diabetic male Wistar rats was well maintained up to 72 h when compared to native insulin. Further, a three-fold increase in plasma insulin concentration was observed in bioconjugate treated animals as against insulin treated animals after 24 h of treatment using ELISA. The histological analysis of different organs of the bioconjugate treated rats indicated that it was non-toxic. This study has paved a way for further detailed studies on similar bioconjugates to develop next-generation biotherapeutics for treating diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL