Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Ecotoxicol Environ Saf ; 276: 116280, 2024 May.
Article En | MEDLINE | ID: mdl-38574648

In recent years, accumulating evidence supports that occupational exposure to solvents is associated with an increased incidence of Parkinson's disease (PD) among workers. The neurotoxic effects of 1-bromopropane (1-BP), a widely used new-type solvent, are well-established, yet data on its relationship with the etiology of PD remain limited. Simultaneously, high-fat consumption in modern society is recognized as a significant risk factor for PD. However, whether there is a synergistic effect between a high-fat diet and 1-BP exposure remains unclear. In this study, adult C57BL/6 mice were fed either a chow or a high-fat diet for 18 weeks prior to 12-week 1-BP treatment. Subsequent neurobehavioral and neuropathological examinations were conducted to assess the effects of 1-BP exposure on parkinsonian pathology. The results demonstrated that 1-BP exposure produced obvious neurobehavioral abnormalities and dopaminergic degeneration in the nigral region of mice. Importantly, a high-fat diet further exacerbated the impact of 1-BP on motor and cognitive abnormalities in mice. Mechanistic investigation revealed that mitochondrial damage and mtDNA release induced by 1-BP and high-fat diet activate NLRP3 and cGAS-STING pathway- mediated neuroinflammatory response, and ultimately lead to necroptosis of dopaminergic neurons. In summary, our study unveils a potential link between chronic 1-BP exposure and PD-like pathology with motor and no-motor defects in experimental animals, and long-term high-fat diet can further promote 1-BP neurotoxicity, which underscores the pivotal role of environmental factors in the etiology of PD.


Diet, High-Fat , Dopaminergic Neurons , Hydrocarbons, Brominated , Mice, Inbred C57BL , Mitochondria , Substantia Nigra , Animals , Hydrocarbons, Brominated/toxicity , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Mice , Substantia Nigra/drug effects , Substantia Nigra/pathology , Substantia Nigra/metabolism , Male , Mitochondria/drug effects , Mitochondria/pathology , Solvents/toxicity
2.
Toxicology ; 504: 153812, 2024 May.
Article En | MEDLINE | ID: mdl-38653376

Neurotoxic organophosphorus compounds can induce a type of delayed neuropathy in humans and sensitive animals, known as organophosphorus-induced delayed neuropathy (OPIDN). OPIDN is characterized by axonal degeneration akin to Wallerian-like degeneration, which is thought to be caused by increased intra-axonal Ca2+ concentrations. This study was designed to investigate that deregulated cytosolic Ca2+ may function downstream of mitodysfunction in activating Wallerian-like degeneration and necroptosis in OPIDN. Adult hens were administrated a single dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP), and then sacrificed at 1 day, 5 day, 10 day and 21 day post-exposure, respectively. Sciatic nerves and spinal cords were examined for pathological changes and proteins expression related to Wallerian-like degeneration and necroptosis. In vitro experiments using differentiated neuro-2a (N2a) cells were conducted to investigate the relationship among mitochondrial dysfunction, Ca2+ influx, axonal degeneration, and necroptosis. The cells were co-administered with the Ca2+-chelator BAPTA-AM, the TRPA1 channel inhibitor HC030031, the RIPK1 inhibitor Necrostatin-1, and the mitochondrial-targeted antioxidant MitoQ along with TOCP. Results demonstrated an increase in cytosolic calcium concentration and key proteins associated with Wallerian degeneration and necroptosis in both in vivo and in vitro models after TOCP exposure. Moreover, co-administration with BATPA-AM or HC030031 significantly attenuated the loss of NMNAT2 and STMN2 in N2a cells, as well as the upregulation of SARM1, RIPK1 and p-MLKL. In contrast, Necrostatin-1 treatment only inhibited the TOCP-induced elevation of p-MLKL. Notably, pharmacological protection of mitochondrial function with MitoQ effectively alleviated the increase in intracellular Ca2+ following TOCP and mitigated axonal degeneration and necroptosis in N2a cells, supporting mitochondrial dysfunction as an upstream event of the intracellular Ca2+ imbalance and neuronal damage in OPIDN. These findings suggest that mitochondrial dysfunction post-TOCP intoxication leads to an elevated intracellular Ca2+ concentration, which plays a pivotal role in the initiation and development of OPIDN through inducing SARM1-mediated axonal degeneration and activating the necroptotic signaling pathway.


Calcium , Chickens , Mitochondria , Necroptosis , Wallerian Degeneration , Animals , Necroptosis/drug effects , Calcium/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Wallerian Degeneration/chemically induced , Wallerian Degeneration/pathology , Wallerian Degeneration/metabolism , Female , Mice , Tritolyl Phosphates/toxicity , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Sciatic Nerve/drug effects , Sciatic Nerve/pathology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/etiology , Organophosphorus Compounds/toxicity , Organophosphorus Compounds/pharmacology , Cell Line, Tumor
3.
Mol Neurobiol ; 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378992

Neurodegenerative diseases are a group of diseases characterized by the progressive loss of neurons, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. These diseases have a high incidence and mortality rate globally, placing a heavy burden on patients and their families. The pathogenesis of neurodegenerative diseases is complex, and there are no effective treatments at present. Cyclin-dependent kinase 5 is a proline-directed serine/threonine protein kinase that is closely related to the development and function of the nervous system. Under physiological conditions, it is involved in regulating the process of neuronal proliferation, differentiation, migration, and synaptic plasticity. Moreover, there is increasing evidence that cyclin-dependent kinase 5 also plays an important role in the pathogenesis of neurodegenerative diseases. In this review, we address the biological characteristics of cyclin-dependent kinase 5 and its role in neurodegenerative diseases. In particular, this review highlights the underlying mechanistic linkages between cyclin-dependent kinase 5 and mitochondrial dysfunction, oxidative stress and neuroinflammation in the context of neurodegeneration. Finally, we also summarize the currently available cyclin-dependent kinase 5 inhibitors and their prospects for the treatment of neurodegenerative diseases. Taken together, a better understanding of the molecular mechanisms of cyclin-dependent kinase 5 involved in neurodegenerative diseases can lead to the development of new strategies for the prevention and treatment of these devastating diseases.

4.
J Neurosci Res ; 102(1): e25292, 2024 01.
Article En | MEDLINE | ID: mdl-38284842

Autophagic dysfunction in neurodegenerative diseases is being extensively studied, yet the exact mechanism of macroautophagy/autophagy in axon degeneration is still elusive. A recent study by Kim et al. links autophagic stress to the sterile α and toll/interleukin 1 receptor motif containing protein 1 (SARM1)-dependent core axonal degeneration program, providing a new insight into the role of autophagy in axon degeneration. In the classical Wallerian axon degeneration model of axotomy, disruption of axonal transport destroys the coordinated activity of pro-survival and pro-degenerative factors in the axoplasm and activates the NADase activity of SARM1, thus triggering the axonal self-destruction program. However, the mechanism for SARM1 activation in the chronic neurodegenerative disorders is more complex. Mitochondrial defects and oxidative stress contribute to the activation of SARM1, while mitophagy can inhibit mitochondrial dysfunction and promote the clearance of SARM1 on mitochondria, thus protecting against neuronal degeneration. Therefore, in-depth elucidation of the underlying mechanisms of mitophagy during axonal degeneration can help develop promising strategies for the prevention and treatment of various neurodegenerative disorders.


Autophagy , Neurodegenerative Diseases , Humans , Axons , Mitochondria , Cytoskeletal Proteins , Armadillo Domain Proteins
5.
Toxicol Res (Camb) ; 13(1): tfae008, 2024 Feb.
Article En | MEDLINE | ID: mdl-38283824

Mitochondrial dysfunction is a key pathological event in the acute liver injury following the overdose of acetaminophen (APAP). Calpain is the calcium-dependent protease, recent studies demonstrate that it is involved in the impairment of mitochondrial dynamics. The mitochondrial unfolded protein response (UPRmt) is commonly activated in the context of mitochondrial damage following pathological insults and contributes to the maintenance of the mitochondrial quality control through regulating a wide range of gene expression. More importantly, it is reported that abnormal aggregation of TDP-43 in mitochondria induced the activation of UPRmt. However, whether it is involved in APAP induced-hepatotoxicity remains unclear. In the present study, C57/BL6 mice were given 300 mg/kg APAP to establish a time-course model of acute liver injury. Furthermore, Calpeptin, the specific inhibiter of calpains, was used to conduct the intervention experiment. Our results showed, APAP exposure produced severe liver injury. Moreover, TDP-43 was obviously accumulated within mitochondria whereas mitochondrial protease LonP1 was significantly decreased. However, these changes exhibited significant recovery at 48 h. By contrast, the mitochondrial protease ClpP and chaperone mtHSP70 and HSP60 were consistently increased, which supported the UPRmt was activated to promote protein homeostasis. Further investigation revealed that calpain-mediated cleavage of TDP-43 could promote the accumulation of TDP-43 in mitochondria compartment, thereby facilitating the activation of UPRmt. Additionally, Calpeptin pretreatment not only protected against APAP-induced liver injury, but also suppressed the formation of TDP-43 aggregates and the activation of UPRmt. Taken together, our findings indicated that in APAP-induced acute liver injury, calpain-mediated cleavage of TDP43 caused its aberrant aggregation on the mitochondria. As a stress-protective response, the induction of UPRmt contributed to the recovery of mitochondrial function.

6.
Ecotoxicol Environ Saf ; 269: 115777, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38056126

Health risks associated with acrylamide (ACR) or high-fat diet (HFD) exposure alone have been widely concerned in recent years. In a realistic situation, ACR and HFD are generally co-existence, and both are risk factors for the development of neurological diseases. The purpose of the present study was to investigate the combined effects of ACR and HFD on the motor nerve function. As a result, neurobehavioral tests and Nissl staining disclosed that long-term HFD exacerbated motor dysfunction and the damage of spinal cord motor neurons in ACR-exposed mice. Co-exposure of ACR and HFD resulted in morphological changes in neuronal mitochondria of the spinal cord, a significantly reduced mitochondrial subunits NDUFS1, UQCRC2, and MTCO1, released the mitochondrial DNA (mtDNA) into the cytoplasm, and promoted the production of reactive oxygen species (ROS). Combined exposure of HFD and ACR activated the calpain/CDK5/Drp1 axis and caused the mitochondrial excessive division, ultimately increasing MLKL-mediated necroptosis in spinal cord motor neurons. Meanwhile, HFD significantly exacerbated ACR-induced activation of NFkB, NLRP3 inflammasome, and cGAS-STING pathway. Taken together, our findings demonstrated that combined exposure of ACR and HFD aggravated the damage of spinal cord motor neurons via neuroinflammation and necroptosis signaling pathway, pointing to additive effects in mice than the individual stress effects.


Neuroinflammatory Diseases , Neurotoxicity Syndromes , Mice , Animals , Acrylamide/toxicity , Necroptosis , Diet, High-Fat/adverse effects , Neurotoxicity Syndromes/etiology
7.
J Neurochem ; 166(3): 588-608, 2023 08.
Article En | MEDLINE | ID: mdl-37350308

Acrylamide (ACR), a common industrial ingredient that is also found in many foodstuffs, induces dying-back neuropathy in humans and animals. However, the mechanisms remain poorly understood. Sterile alpha and toll/interleukin 1 receptor motif-containing protein 1 (SARM1) is the central determinant of axonal degeneration and has crosstalk with different cell death programs to determine neuronal survival. Herein, we illustrated the role of SARM1 in ACR-induced dying-back neuropathy. We further demonstrated the upstream programmed cell death mechanism of this SARM1-dependent process. Spinal cord motor neurons that were induced to overexpress SARM1 underwent necroptosis rather than apoptosis in ACR neuropathy. Mechanically, non-canonical necroptotic pathways mediated mitochondrial permeability transition pore (mPTP) opening, reactive oxygen species (ROS) production, and mitochondrial fission. What's more, the final executioner of necroptosis, phosphorylation-activated mixed lineage kinase domain-like protein (MLKL), aggregated in mitochondrial fractions. Rapamycin intervention removed the impaired mitochondria, inhibited necroptosis for axon maintenance and neuronal survival, and alleviated ACR neuropathy. Our work clarified the functional links among mitophagy, necroptosis, and SARM1-dependent axonal destruction during ACR intoxication, providing novel therapeutic targets for dying-back neuropathies.


Mitophagy , Necroptosis , Animals , Humans , Motor Neurons/metabolism , Apoptosis/physiology , Axons/physiology , Acrylamides/metabolism , Cytoskeletal Proteins/metabolism , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism
8.
Phytother Res ; 37(1): 77-88, 2023 Jan.
Article En | MEDLINE | ID: mdl-36054436

Chronic acrylamide (ACR) intoxication causes typical pathology of axon degeneration. Moreover, sterile-α and toll/interleukin 1 receptor motif-containing protein 1 (SARM1), the central executioner of the programmed axonal destruction process under various insults, is up-regulated in ACR neuropathy. However, it remains unclear whether inhibitors targeting SARM1 are effective or not. Among all the pharmacological antagonists, berberine chloride (BBE), a natural phytochemical and the first identified non-competitive inhibitor of SARM1, attracts tremendous attention. Here, we observed the protection of 100 µM BBE against ACR-induced neurites injury (2 mM ACR, 24 hr) in vitro, and further evaluated the neuroprotective effect of BBE (100 mg/kg p.o. three times a week for 4 weeks) in ACR-intoxicated rats (40 mg/kg i.p. three times a week for 4 weeks). The expression of SARM1 was also detected. BBE intervention significantly inhibited the overexpression of SARM1, ameliorated axonal degeneration, alleviated pathological changes in the sciatic nerve and spinal cord, and improved neurobehavioral symptoms in ACR-poisoned rats. Thus, BBE exhibits a strong neuroprotective effect against the SARM1-dependent axon destruction in ACR neuropathy. Meanwhile, our study underscores the need for appropriate inhibitor selection in diverse situations that would benefit from blocking the SARM1-dependent axonal destruction pathway.


Berberine , Neuroprotective Agents , Peripheral Nervous System Diseases , Rats , Animals , Berberine/pharmacology , Chlorides/metabolism , Acrylamide/toxicity , Neuroprotective Agents/pharmacology , Axons/metabolism , Axons/pathology
9.
Front Med (Lausanne) ; 10: 1283503, 2023.
Article En | MEDLINE | ID: mdl-38204484

Objectives: This study used machine learning algorithms to identify important variables and predict postinduction hypotension (PIH) in patients undergoing colorectal tumor resection surgery. Methods: Data from 318 patients who underwent colorectal tumor resection under general anesthesia were analyzed. The training and test sets are divided based on the timeline. The Boruta algorithm was used to screen relevant basic characteristic variables and establish a model for the training set. Four models, regression tree, K-nearest neighbor, neural network, and random forest (RF), were built using repeated cross-validation and hyperparameter optimization. The best model was selected, and a sorting chart of the feature variables, a univariate partial dependency profile, and a breakdown profile were drawn. R2, mean absolute error (MAE), mean squared error (MSE), and root MSE (RMSE) were used to plot regression fitting curves for the training and test sets. Results: The basic feature variables associated with the Boruta screening were age, sex, body mass index, L3 skeletal muscle index, and HUAC. In the optimal RF model, R2 was 0.7708 and 0.7591, MAE was 0.0483 and 0.0408, MSE was 0.0038 and 0.0028, and RMSE was 0.0623 and 0.0534 for the training and test sets, respectively. Conclusion: A high-performance algorithm was established and validated to demonstrate the degree of change in blood pressure after induction to control important characteristic variables and reduce PIH occurrence.

10.
Sensors (Basel) ; 22(24)2022 Dec 07.
Article En | MEDLINE | ID: mdl-36559962

Microsystems play an important role in the Internet of Things (IoT). In many unattended IoT applications, microsystems with small size, lightweight, and long life are urgently needed to achieve covert, large-scale, and long-term distribution for target detection and recognition. This paper presents for the first time a low-power, long-life microsystem that integrates self-power supply, event wake-up, continuous vibration sensing, and target recognition. The microsystem is mainly used for unattended long-term target perception and recognition. A composite energy source of solar energy and battery is designed to achieve self-powering. The microsystem's sensing module, circuit module, signal processing module, and transceiver module are optimized to further realize the small size and low-power consumption. A low-computational recognition algorithm based on support vector machine learning is designed and ported into the microsystem. Taking the pedestrian, wheeled vehicle, and tracked vehicle as targets, the proposed microsystem of 15 cm3 and 35 g successfully realizes target recognitions both indoors and outdoors with an accuracy rate of over 84% and 65%, respectively. Self-powering of the microsystem is up to 22.7 mW under the midday sunlight, and 11 min self-powering can maintain 24 h operation of the microsystem in sleep mode.


Solar Energy , Vibration , Sunlight , Electric Power Supplies , Algorithms
11.
Mol Neurobiol ; 59(12): 7337-7353, 2022 Dec.
Article En | MEDLINE | ID: mdl-36171479

Sterile α and toll/interleukin 1 receptor motif-containing protein 1 (SARM1) is the defining molecule and central executioner of programmed axon death, also known as Wallerian degeneration. SARM1 has a mitochondrial targeting sequence, and it can bind to and stabilize PTEN-induced putative kinase 1 (PINK1) for mitophagy induction, but the deletion of the mitochondrial localization sequence is found to disrupt the mitochondrial localization of SARM1 in neurons without altering its ability to promote axon degeneration after axotomy. The biological significance of SARM1 mitochondrial localization remains elusive. In this study, we observed that the pro-degeneration factor, SARM1, was upregulated in acrylamide (ACR) neuropathy, a slow, Wallerian-like, programmed axonal death process. The upregulated SARM1 accumulated on mitochondria, interfered with mitochondrial dynamics, and activated PINK1-mediated mitophagy. Importantly, rapamycin (RAPA) intervention eliminated mitochondrial accumulation of SARM1 and partly attenuated ACR neuropathy. Thus, mitochondrial localization of SARM1 may contribute to its clearance through the SARM1-PINK1 mitophagy pathway, which inhibits axonal degeneration through a negative feedback loop. The mitochondrial localization of SARM1 complements the coordinated activity of the pro-survival factor, nicotinamide mononucleotide adenyltransferase 2 (NMNAT2), and SARM1 and is part of the self-limiting molecular mechanisms underpinning programmed axon death in ACR neuropathy. Mitophagy clearance of SARM1 is complementary to the coordinated activity of NMNAT2 and SARM1 in ACR neuropathy.


Armadillo Domain Proteins , Peripheral Nervous System Diseases , Humans , Armadillo Domain Proteins/metabolism , Mitophagy , Acrylamide/toxicity , Cytoskeletal Proteins/metabolism , Axons/metabolism , Peripheral Nervous System Diseases/chemically induced , Protein Kinases/metabolism
12.
Med Hypotheses ; 155: 110666, 2021 Oct.
Article En | MEDLINE | ID: mdl-34455132

Some organophosphorus compounds (OPs) can cause a type of delayed neurotoxicity in human being, which is known as organophosphorus-induced delayed neuropathy (OPIDN). Signs and symptoms of the patients include tingling and sensory loss of the hands and feet, followed by progressive muscle weakness in the lower and upper limbs, and ataxia. Pathologically, OPIDN are characterized by distal sensorimotor axonopathy due to the distal axonal degeneration of nerve tracts located in central and peripheral nervous systems. The morphological pattern of the distal axonopathy is similar to Wallerian degeneration that occurs after nerve injury in vitro. It is generally acknowledged that inhibition and subsequent aging of neuropathy target esterase (NTE) is required for the occurrence of OPIDN. However, the underlying mechanisms through which NTE triggers axonal degeneration in OPIDN is still largely unclear. Recently, sterile alpha and toll/interleukin receptor motif-containing protein 1(SARM1) has been identified as a key player in Wallerian degeneration. In physical and chemical transection of axons, SARM1 was found to promotes axon degeneration by hydrolyzing NAD+. By contrast, SARM1 deficiency could prevent neuron degeneration in response to a wide range of insults. Furthermore, SARM1 can also translocate to mitochondria and cause mitochondrial damage, thus triggering axon degeneration and neuron death. These findings suggested the existence of a pathway in axonal degeneration that might be targeted therapeutically. Here, we hypothesize that SARM1 activation after NTE inhibition and aging might be an etiological factor in OPIDN that regulates Wallerian-like degeneration. Analysing SARM1 mediated NAD degeneration pathway and its upstream activators in OPIDN could contribute to the development of novel therapies to treat OPIDN.


Peripheral Nervous System Diseases , Wallerian Degeneration , Armadillo Domain Proteins , Axons/pathology , Cytoskeletal Proteins , Humans , Wallerian Degeneration/chemically induced , Wallerian Degeneration/pathology
13.
Mol Neurobiol ; 58(5): 2362-2378, 2021 May.
Article En | MEDLINE | ID: mdl-33417222

Alzheimer's disease (AD) is the most common late-onset dementia characterized by the deposition of extracellular amyloid plaques and formation of intracellular neurofibrillary tangles, which eventually lead to neuronal loss and cognitive deficits. Multiple lines of evidence indicate that mitochondrial dysfunction is involved in the initiation and progression of AD. As essential machinery for mitochondrial quality control, mitophagy plays a housekeeping role in neuronal cells by eliminating dysfunctional or excessive mitochondria. At present, mounting evidence support that the activity of mitophagy markedly declines in human brains during aging. Impaired mitophagy and mitochondrial dysfunction were causally linked to bioenergetic deficiency, oxidative stress, microglial activation, and chronic inflammation, thereby aggravating the Aß and tau pathologies and leading to neuron loss in AD. This review summarizes recent evidence for age-associated mitophagy decline during human aging and provides an overview of mitochondrial dysfunction involved in the process of AD. It also discusses the underlying mechanisms through which defective mitophagy leads to neuronal cell death in AD. Therapeutic interventions aiming to restore mitophagy functions can be used as a strategy for ameliorating AD pathogenesis.


Aging/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Mitochondria/metabolism , Mitophagy/physiology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Humans , Mitochondria/pathology , tau Proteins/metabolism
14.
Cell Mol Life Sci ; 75(13): 2389-2406, 2018 07.
Article En | MEDLINE | ID: mdl-29675785

Axon degeneration is a pathophysiological process of axonal dying and breakdown, which is characterized by several morphological features including the accumulation of axoplasmic organelles, disassembly of microtubules, and fragmentation of the axonal cytoskeleton. Autophagy, a highly conserved lysosomal-degradation machinery responsible for the control of cellular protein quality, is widely believed to be essential for the maintenance of axonal homeostasis in neurons. In recent years, more and more evidence suggests that dysfunctional autophagy is associated with axonal degeneration in many neurodegenerative diseases. Here, we review the core machinery of autophagy in neuronal cells, and provide several major steps that interfere with autophagy flux in neurodegenerative conditions. Furthermore, this review highlights the potential role of neuronal autophagy in axon degeneration, and presents some possible molecular mechanisms by which dysfunctional autophagy leads to axon degeneration in pathological conditions.


Autophagy , Axons/metabolism , Nerve Degeneration/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Animals , Autophagosomes/metabolism , Humans , Lysosomes/metabolism , Models, Biological , Nerve Degeneration/pathology , Neurodegenerative Diseases/pathology
15.
Zhonghua Yu Fang Yi Xue Za Zhi ; 38(2): 84-6, 2004 Mar.
Article Zh | MEDLINE | ID: mdl-15061911

OBJECTIVE: To know their real epidemiological histories in 1,091 probale cases of severe acute respiratory syndrome (SARS) without definite history of contact with SARS patients in the first survey. METHODS: All the probable SARS cases until June 9, 2003 without definite history of contact with SARS patients in the first epidemiological survey were included in a re-survey with questionnaire. The second survey was carried out during June 9 to 30, 2003. RESULTS: The results showed that history of contact with other SARS patients was obtained in 15.9% of 1 091 probale SRAS cases in the second survey, transmission of SARS to others was found in 10.5% of them, and source of infection in hospital was found in 46.5%. Comprehensive judgement based on epidemiological history showed that probale history of contact with SARS patients could be found in 72.9% of 1,091 probale cases of SARS in the second survey. CONCLUSION: Source of infection could be found through additional survey in part of probale cases of SARS without it in initial epidemiological survey.


Contact Tracing/statistics & numerical data , Severe Acute Respiratory Syndrome/epidemiology , China/epidemiology , Humans , Retrospective Studies , Surveys and Questionnaires
...