Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(38): 89442-89458, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37453008

ABSTRACT

The accumulation, pathways, and sources of anthropogenic lead (Pb) in Ulleung Basin sediments were investigated based on the temporal and spatial variations in the Pb concentration and stable Pb isotopes for 21 dated box core sediments collected from the shelf, slope, and basin in the southern East/Japan Sea. Leached (1 M HCl) Pb concentrations and isotope ratios (207Pb/206Pb and 208Pb/206Pb) were nearly constant before 1930, but have increased rapidly until the present. The primary source of anthropogenic Pb is considered to be atmospheric deposition, showing the signature of a mixture of leaded gasoline and coals, which was the major anthropogenic source in the basin. However, after the 1990s, anthropogenic Pb from dumping materials added as much as 10-25% to the slope sediment and has been spreading out from the water column accompanied by the movement of the East Sea Intermediate Water. In shelf areas, inputs from nonferrous refineries in the coastal industrial complexes play an important role in pollution from anthropogenic Pb.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Lead , Geologic Sediments , Japan , Environmental Monitoring , Isotopes/analysis , Water
2.
Mater Sci Eng C Mater Biol Appl ; 103: 109729, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349510

ABSTRACT

Graphene and its derivatives have seen a rapid rise in interest as promising biomaterials especially in the field of tissue engineering, regenerative medicine, and cell biology of late. Despite its proven potential in numerous biological applications, information regarding the relationship between the different forms of graphene and cell lineages is still lacking partly due to its topical emergence in cellular studies. Herein, we explore the biocompatibility of four types of graphene substrates (chemical vapor deposition grown graphene, mechanically exfoliated graphene, chemically exfoliated graphene oxide, and reduced graphene oxide) with three types of somatic cells (keratinocytes, hepatocytes, endothelial cells) derived from the three germ layers in relation to cell adhesion, proliferation, morphology, and gene expression. The results revealed exceptional cell adhesion for all tested groups but enhanced proliferation and cytoskeletal interconnectivity in graphene oxide and reduced graphene oxide substrates. We were unable to detect any adverse effects in gene expression and survivability during a week of culture. We further show topographic changes to graphene substrates under fetal bovine serum adsorption to better illustrate the actual microenvironment of inhabitant cells. This study highlights the extraordinary synergy between graphene and somatic cells, suggesting the discretionary use of extracellular matrix components for in vitro cultivation.


Subject(s)
Cell Adhesion/drug effects , Cell Proliferation/drug effects , Graphite , Hepatocytes , Human Umbilical Vein Endothelial Cells , Keratinocytes , Graphite/chemistry , Graphite/pharmacology , Hepatocytes/cytology , Hepatocytes/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/metabolism
3.
Stem Cells ; 37(5): 623-630, 2019 05.
Article in English | MEDLINE | ID: mdl-30721559

ABSTRACT

The derivation of human embryonic stem cells (hESCs) by somatic cell nuclear transfer (SCNT) has prompted a re-emerging interest in using such cells for therapeutic cloning. Despite recent advancements in derivation protocols, the functional potential of CHA-NT4 derived cells is yet to be elucidated. For this reason, this study sought to differentiate CHA-NT4 cells toward an endothelial lineage in order to evaluate in vitro and in vivo functionality. To initial differentiation, embryoid body formation of CHA-NT4 was mediated by concave microwell system which was optimized for hESC-endothelial cell (EC) differentiation. The isolated CD31+ cells exhibited hallmark endothelial characteristics in terms of morphology, tubule formation, and ac-LDL uptake. Furthermore, CHA-NT4-derived EC (human nuclear transfer [hNT]-ESC-EC) transplantation in hind limb ischemic mice rescued the hind limb and restored blood perfusion. These findings suggest that hNT-ESC-EC are functionally equivalent to hESC-ECs, warranting further study of CHA-NT4 derivatives in comparison to other well established pluripotent stem cell lines. This revival of human SCNT-ESC research may lead to interesting insights into cellular behavior in relation to donor profile, mitochondrial DNA, and oocyte quality. Stem Cells 2019;37:623-630.


Subject(s)
Cell Differentiation/genetics , Endothelial Cells/transplantation , Human Embryonic Stem Cells/transplantation , Induced Pluripotent Stem Cells/transplantation , Animals , Hindlimb/pathology , Hindlimb/transplantation , Humans , Ischemia/therapy , Mice , Nuclear Transfer Techniques
4.
Stem Cell Reports ; 11(5): 1244-1256, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30293852

ABSTRACT

The selective survival advantage of culture-adapted human embryonic stem cells (hESCs) is a serious safety concern for their clinical application. With a set of hESCs with various passage numbers, we observed that a subpopulation of hESCs at late passage numbers was highly resistant to various cell death stimuli, such as YM155, a survivin inhibitor. Transcriptome analysis from YM155-sensitive (YM155S) and YM155-resistant (YM155R) hESCs demonstrated that BCL2L1 was highly expressed in YM155R hESCs. By matching the gene signature of YM155R hESCs with the Cancer Therapeutics Response Portal dataset, BH3 mimetics were predicted to selectively ablate these cells. Indeed, short-course treatment with a sub-optimal dose of BH3 mimetics induced the spontaneous death of YM155R, but not YM155S hESCs by disrupting the mitochondrial membrane potential. YM155S hESCs remained pluripotent following BH3 mimetics treatment. Therefore, the use of BH3 mimetics is a promising strategy to specifically eliminate hESCs with a selective survival advantage.


Subject(s)
Human Embryonic Stem Cells/cytology , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/pharmacology , Aniline Compounds/pharmacology , Cell Count , Cells, Cultured , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism , Humans , Imidazoles/pharmacology , Naphthoquinones/pharmacology , Stress, Physiological/drug effects , Sulfonamides/pharmacology , bcl-X Protein/metabolism
5.
Polymers (Basel) ; 10(8)2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30960764

ABSTRACT

Adipose-derived mesenchymal stem cells (AD-MSCs) have been studied as desirable cell sources for regenerative medicine and therapeutic application. However, it has still remained a challenge to obtain enough adequate and healthy cells in large quantities. To overcome this limitation, various biomaterials have been used to promote expansion of MSCs in vitro. Recently, hexanoyl glycol chitosan (HGC) was introduced as a new biomaterial for various biomedical applications, in particular 3D cell culture, because of its biodegradability, biocompatibility, and other promising biofunctional properties. In this study, the effect of HGC on the proliferation of AD-MSCs was examined in vitro, and its synergistic effect with basic fibroblast growth factor (bFGF), which has been widely used to promote proliferation of cells, was evaluated. We found that the presence of HGC increased the proliferative capacity of AD-MSCs during long-term culture, even at low concentrations of bFGF. Furthermore, it suppressed the expression of senescence-related genes and improved the mitochondrial functionality. Taken all together, these findings suggest that the HGC demonstrate a potential for sustained growth of AD-MSCs in vitro.

6.
Front Plant Sci ; 8: 520, 2017.
Article in English | MEDLINE | ID: mdl-28443113

ABSTRACT

For genetic identification of soybean [Glycine max (L.) Merrill] cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, co-dominant and relatively abundant. Despite their biological importance, the investigation of InDels with proven quality and reproducibility has been limited. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a dense variation block (dVB) with non-random recombination due to many variations. Firstly, 2,274 VBs were mined by analyzing whole genome data in six soybean cultivars (Backun, Sinpaldal 2, Shingi, Daepoong, Hwangkeum, and Williams 82) for transferability to dVB-specific InDel markers. Secondly, 73,327 putative InDels in the dVB regions were identified for the development of soybean barcode system. Among them, 202 dVB-specific InDels from all soybean cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the markers were assessed in 147 soybean cultivars, and the soybean barcode system that allows a clear distinction among soybean cultivars is also detailed. In addition, the changing of the dVBs in a chromosomal level can be quickly identified due to investigation of the reshuffling pattern of the soybean cultivars with 27 maker sets. Especially, a backcross-inbred offspring, "Singang" and a recurrent parent, "Sowon" were identified by using the 27 InDel markers. These results indicate that the soybean barcode system enables not only the minimal use of molecular markers but also comparing the data from different sources due to no need of exploiting allele binning in new varieties.

7.
Mar Pollut Bull ; 88(1-2): 373-82, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25148756

ABSTRACT

To determine the characteristics of metal pollution sources in Ulsan Bay, East Sea, 39 surface and nine core sediments were collected within the bay and offshore area, and analyzed for metals and stable lead (Pb) isotopes. Most surface sediments (>95% from 48 sites) had high copper (Cu), zinc (Zn), cadmium (Cd), and Pb concentrations that were as much as 1.3 times higher than background values. The primary source of metal contamination came from activities related to nonferrous metal refineries near Onsan Harbor, and the next largest source was from shipbuilding companies located at the mouth of the Taehwa River. Three different anthropogenic sources and background sediments could be identified as end-members using Pb isotopes. Isotopic ratios for the anthropogenic Pb revealed that the sources were imported ores from Australia, Peru, and the United States. In addition, Pb isotopes of anthropogenic Pb discharged from Ulsan Bay toward offshore could be determined.


Subject(s)
Geologic Sediments/chemistry , Lead/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Australia , Bays/chemistry , Cadmium/analysis , Copper/analysis , Copper/chemistry , Environmental Monitoring , Isotopes , Lead/chemistry , Metallurgy , Metals, Heavy/chemistry , Republic of Korea , Water Pollutants, Chemical/chemistry , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...