Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963915

ABSTRACT

Investigating the ternary relationship among nanoparticles (NPs), their immediate molecular environment, and test organisms rather than the direct interaction between pristine NPs and test organisms has been thrust into the mainstream of nanotoxicological research. Diverging from previous work that predominantly centered on surrounding molecules affecting the toxicity of NPs by modulating their nanoproperties, this study has unveiled a novel dimension: surrounding molecules altering bacterial susceptibility to NPs, consequently impacting the outcomes of nanobio interaction. The study found that adding nitrate as the surrounding molecules could alter bacterial respiratory pathways, resulting in an enhanced reduction of ceria NPs (nanoceria) on the bacterial surfaces. This, in turn, increased the ion-specific toxicity originating from the release of Ce3+ ions at the nanobio interface. Further transcriptome analysis revealed more mechanistic details underlying the nitrate-induced changes in the bacterial energy metabolism and subsequent toxicity patterns. These findings offer a new perspective for the deconstruction of nanobio interactions and contribute to a more comprehensive understanding of NPs' environmental fate and ecotoxicity.

2.
Chemosphere ; 362: 142649, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901699

ABSTRACT

Little is known about the effect of surface coatings on the fate and toxicity of CeO2 nanoparticles (NPs) to aquatic plants. In this study, we modified nCeO2 with chitosan (Cs) and alginate (Al) to obtain positively charged nCeO2@Cs and negatively charged nCeO2@Al, respectively, and exposed them to a representative aquatic plant, duckweed (Lemna minor L.). Uncoated nCeO2 could significantly inhibit the growth of duckweed, induce oxidative damage and lead to cell death, whereas nCeO2@Cs and nCeO2@Al exhibited lower toxicity to duckweed. ICP-MS analysis revealed that the Ce content in duckweed from the nCeO2 group was 1.74 and 2.85 times higher than that in the nCeO2@Cs and nCeO2@Al groups, respectively. Microscopic observations indicated that the positively charged nCeO2@Cs was more readily adsorbed on the root surface of duckweed than the negatively charged nCeO2@Al. The results of XANES and LCF demonstrated that a certain percentage of Ce(Ⅳ) was reduced to Ce(Ⅲ) after the interaction of the three NPs with duckweed, but the degree of biotransformation differed among the treatments. Specifically, the absolute contents of Ce(III) produced of nCeO2@Cs and nCeO2@Al through biotransformation were reduced by 55.5% and 83.5%, respectively, compared with that of the nCeO2 group, which might be the key factor for the diminished phytotoxicity of the coated nCeO2 to the duckweed. These findings were valuable for understanding the toxicity of metal-based NPs to aquatic plants and for the synthesis of environmentally friendly nanomaterials.

3.
Nanomaterials (Basel) ; 13(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37764551

ABSTRACT

As one of the most widely used nanomaterials, CeO2 nanoparticles (NPs) might be released into the aquatic environment. In this paper, the interaction of CeO2 NPs and Ce3+ ions (0~10 mg/L) with duckweed (Lemna minor L.) was investigated. CeO2 NPs significantly inhibited the root elongation of duckweed at concentrations higher than 0.1 mg/L, while the inhibition threshold of Ce3+ ions was 0.02 mg/L. At high doses, both reduced photosynthetic pigment contents led to cell death and induced stomatal deformation, but the toxicity of Ce3+ ions was greater than that of CeO2 NPs at the same concentration. According to the in situ distribution of Ce in plant tissues by µ-XRF, the intensity of Ce signal was in the order of root > old frond > new frond, suggesting that roots play a major role in the uptake of Ce. The result of XANES showed that 27.6% of Ce(IV) was reduced to Ce(III) in duckweed treated with CeO2 NPs. We speculated that the toxicity of CeO2 NPs to duckweed was mainly due to its high sensitivity to the released Ce3+ ions. To our knowledge, this is the first study on the toxicity of CeO2 NPs to an aquatic higher plant.

4.
Anal Chem ; 95(15): 6391-6398, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37019686

ABSTRACT

The development of nanotechnology has transformed many cutting-edge studies related to single-molecule analysis into nanoparticle (NP) detection with a single-NP sensitivity and ultrahigh resolution. While laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been successful in quantifying and tracking NPs, its quantitative calibration remains a major challenge due to the lack of suitable standards and the uncertain matrix effects. Herein, we frame a new approach to prepare quantitative standards via precise synthesis of NPs, nanoscale characterization, on-demand NP distribution, and deep learning-assisted NP counting. Gold NP standards were prepared to cover the mass range from sub-femtogram to picogram levels with sufficient accuracy and precision, thus establishing an unambiguous relationship between the sampled NP number in each ablation and the corresponding mass spectral signal. Our strategy facilitated for the first time the study of the factors affecting particulate sample capture and signal transductions in LA-ICP-MS analysis and culminated in the development of an LA-ICP-MS-based method for absolute NP quantification with single-NP sensitivity and single-cell quantification capability. The achievements would herald the emergence of new frontiers cut across a spectrum of toxicological and diagnostic issues related to NP quantification.


Subject(s)
Laser Therapy , Nanoparticles , Mass Spectrometry/methods , Spectrum Analysis , Lasers
5.
Molecules ; 28(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36838784

ABSTRACT

With the widespread applications of manufactured nanoparticles (NPs), there are increasing concerns about their potential adverse effects on the environment and living systems. Many studies demonstrated that NPs could significantly affect the growth and development of crop plants. However, knowledge regarding the impacts of NPs on crop quality is rather limited. In this study, the effects of CeO2 NPs (25, 75, and 225 mg Ce/kg) and CeCl3 (25 mg Ce/kg) on the nutritional components of soil-cultivated corn and soybean plants were evaluated. Both treatments tended to decrease the dry weight of grain per plant, while only 225 mg/kg CeO2 NPs on soybean and CeCl3 on corn showed statistical significance compared with the respective control. CeO2 NPs at 225 mg/kg significantly decreased the content of starch in the corn kernels by 18.2% but increased total phenols in soybean seeds by 18.4%. Neither CeO2 NPs nor CeCl3 significantly affected the contents of minerals in corn kernels except for Zn. However, in the case of soybean, the two treatments tended to decrease the contents of P, Zn, Mn, and Mo but increase the content of S. Overall, the results suggest that CeO2 NPs and Ce3+ ions showed similar but not identical effects on corn and soybean plants. CeO2 NPs affect the nutritional quality of crop plants in a species-dependent manner.


Subject(s)
Cerium , Metal Nanoparticles , Nanoparticles , Glycine max , Zea mays , Cerium/pharmacology , Nutritive Value
6.
Nanomaterials (Basel) ; 12(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269237

ABSTRACT

Nanoparticles (NPs) suspension is thermodynamically unstable, agglomeration and sedimentation may occur after introducing NPs into a physiological solution, which in turn affects their recognition and uptake by cells. In this work, rod-like gold NPs (AuNRs) with uniform morphology and size were synthesized to study the impact of bovine serum albumin (BSA) pre-coating on the cellular uptake of AuNRs. A comparison study using horizontal and vertical cell culture configurations was performed to reveal the effect of NPs sedimentation on AuNRs uptake at the single-cell level. Our results demonstrate that the well-dispersed AuNRs-BSA complexes were more stable in culture medium than the pristine AuNRs, and therefore were less taken up by cells. The settled AuNRs agglomerates, although only a small fraction of the total AuNRs, weighed heavily in determining the average AuNRs uptake at the population level. These findings highlight the necessity of applying single-cell quantification analysis in the study of the mechanisms underlying the cellular uptake of NPs.

7.
NanoImpact ; 24: 100364, 2021 10.
Article in English | MEDLINE | ID: mdl-35559823

ABSTRACT

Phytotoxicity of nanoceria (nCeO2) has been reported, but there are few studies on how to reduce its phytotoxicity. In the present study, we modified nCeO2 with two organophosphates (nCeO2@ATMP and nCeO2@EDTMP) and compared their toxicity to lettuce with that of uncoated nCeO2. The results showed that bare nCeO2 significantly inhibited the root growth of lettuce, leading to oxidative damages and root cell death. In contrast, after surface modification, the toxicity of nCeO2@ATMP to lettuce was weakened, while nCeO2@EDTMP was nontoxic to lettuce. It was found that the surface properties of the modified materials have been changed, resulting in sharp decreases in their bioavailability. Although nCeO2 with and without surface coatings were all transformed when interacting with plants, the absolute contents of Ce(III) in roots treated with modified nCeO2 decreased significantly, which may be the main reason for the reduction of toxicity. This study indicates that it is feasible to reduce the phytotoxicity of nanomaterials through surface coating.


Subject(s)
Lactuca , Nanoparticles , Nanoparticles/toxicity , Oxidative Stress
8.
Front Toxicol ; 3: 753316, 2021.
Article in English | MEDLINE | ID: mdl-35295152

ABSTRACT

Quantifying the distribution of nanomaterials in complex samples is of great significance to the toxicological research of nanomaterials as well as their clinical applications. Radiotracer technology is a powerful tool for biological and environmental tracing of nanomaterials because it has the advantages of high sensitivity and high reliability, and can be matched with some spatially resolved technologies for non-invasive, real-time detection. However, the radiolabeling operation of nanomaterials is relatively complicated, and fundamental studies on how to optimize the experimental procedures for the best radiolabeling of nanomaterials are still needed. This minireview looks back into the methods of radiolabeling of nanomaterials in previous work, and highlights the superiority of the "last-step" labeling strategy. At the same time, the problems existing in the stability test of radiolabeling and the suggestions for further improvement are also addressed.

SELECTION OF CITATIONS
SEARCH DETAIL
...