Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Nutrients ; 16(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732601

Beneficial health effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) are partly attributed to specialized pro-resolving mediators (SPMs), which promote inflammation resolution. Strategies to improve n-3 PUFA conversion to SPMs may, therefore, be useful to treat or prevent chronic inflammatory disorders. Here, we explored a synbiotic strategy to increase circulating SPM precursor levels. Healthy participants (n = 72) received either SynΩ3 (250 mg eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) lysine salts; two billion CFU Bacillus megaterium; n = 23), placebo (n = 24), or fish oil (300 mg EPA plus DHA; N = 25) capsules daily for 28 days in a randomized, double-blind placebo-controlled parallel 3-group design. Biomarkers were assessed at baseline and after 2 and 28 days of intervention. The primary analysis involved the comparison between SynΩ3 and placebo. In addition, SynΩ3 was compared to fish oil. The synbiotic SynΩ3 comprising Bacillus megaterium DSM 32963 and n-3 PUFA salts significantly increased circulating SPM precursor levels, including 18-hydroxy-eicosapentaenoic acid (18-HEPE) plus 5-HEPE, which was not achieved to this extent by fish oil with a similar n-3 PUFA content. Omega-3 indices were increased slightly by both SynΩ3 and fish oil. These findings suggest reconsidering conventional n-3 PUFA supplementation and testing the effectiveness of SynΩ3 particularly in conditions related to inflammation.


Bacillus megaterium , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Synbiotics , Humans , Male , Female , Adult , Double-Blind Method , Synbiotics/administration & dosage , Eicosapentaenoic Acid/blood , Young Adult , Docosahexaenoic Acids/blood , Middle Aged , Biomarkers/blood , Healthy Volunteers , Fish Oils/administration & dosage
2.
Gut Microbes ; 16(1): 2305716, 2024.
Article En | MEDLINE | ID: mdl-38300741

Gut microbiota is an important modulator of human health and contributes to high inter-individual variation in response to food and pharmaceutical ingredients. The clinical outcomes of interventions with prebiotics, probiotics, and synbiotics have been mixed and often unpredictable, arguing for novel approaches for developing microbiome-targeted therapeutics. Here, we review how the gut microbiota determines the fate of and individual responses to dietary and xenobiotic compounds via its immense metabolic potential. We highlight that microbial metabolites play a crucial role as targetable mediators in the microbiota-host health relationship. With this in mind, we expand the concept of synbiotics beyond prebiotics' role in facilitating growth and engraftment of probiotics, by focusing on microbial metabolism as a vital mode of action thereof. Consequently, we discuss synbiotic compositions that enable the guided metabolism of dietary or co-formulated ingredients by specific microbes leading to target molecules with beneficial functions. A workflow to develop novel synbiotics is presented, including the selection of promising target metabolites (e.g. equol, urolithin A, spermidine, indole-3 derivatives), identification of suitable substrates and producer strains applying bioinformatic tools, gut models, and eventually human trials.In conclusion, we propose that discovering and enabling specific substrate-microbe interactions is a valuable strategy to rationally design synbiotics that could establish a new category of hybrid nutra-/pharmaceuticals.


Gastrointestinal Microbiome , Microbiota , Probiotics , Synbiotics , Humans , Gastrointestinal Microbiome/physiology , Prebiotics
3.
Front Nutr ; 9: 1001419, 2022.
Article En | MEDLINE | ID: mdl-36570155

Introduction: Impaired glucose homeostasis is a significant risk factor for cardiometabolic diseases, whereas the efficacy of available standard therapies is limited, mainly because of poor adherence. This post-marketing study assessed the glucose-lowering potential of a synbiotic-based formulation. Methods: One hundred ninety-two participants were enrolled in a digital nutrition program with continuous glucose monitoring (CGM) and received a study product comprising Bacillus subtilis DSM 32315 and L-alanyl-L-glutamine. Participants underwent a first sensor phase without supplementation, followed by a 14-day supplementation phase without sensor, and completed by a second sensor phase while continuing supplementation. Fasting glucose levels were determined before and after supplementation by CGM. In addition, the postprandial glycemic response to an oral glucose challenge, body weight, HbA1c concentrations, and BMI was analyzed. Subgroup analyses of subjects with elevated glucose and HbA1c levels vs. normoglycemic subjects were performed. Results: Supplementation with the study product resulted in significant improvements in glucose parameters (delta values: fasting glucose -2,13% ± 8.86; iAUC0-120 -4.91% ± 78.87; HbA1c: -1.20% ± 4.72) accompanied by a significant weight reduction (-1.07 kg ± 2.30) in the study population. Subgroup analyses revealed that the improvements were mainly attributed to a prediabetic subgroup with elevated fasting glucose and HbA1c values before supplementation (delta values: fasting glucose -6.10% 4± 7.89; iAUC0-120 -6.28% ± 115.85; HbA1c -3.31% ± 4.36; weight: -1.47 kg ± 2.82). Conclusion: This study indicates that the synbiotic composition is an effective and convenient approach to counteract hyperglycemia. Further placebo-controlled studies are warranted to test its efficacy in the treatment of cardiometabolic diseases.

4.
Nutrients ; 14(11)2022 May 28.
Article En | MEDLINE | ID: mdl-35684065

Specialized pro-resolving mediators (SPM) have emerged as crucial lipid mediators that confer the inflammation-resolving effects of omega-3 polyunsaturated fatty acids (n-3 PUFA). Importantly, SPM biosynthesis is dysfunctional in various conditions, which may explain the inconclusive efficacy data from n-3 PUFA interventions. To overcome the limitations of conventional n-3 PUFA supplementation strategies, we devised a composition enabling the self-sufficient production of SPM in vivo. Bacillus megaterium strains were fed highly bioavailable n-3 PUFA, followed by metabololipidomics analysis and bioinformatic assessment of the microbial genomes. All 48 tested Bacillus megaterium strains fed with the n-3 PUFA formulation produced a broad range of SPM and precursors thereof in a strain-specific manner, which may be explained by the CYP102A1 gene polymorphisms that we detected. A pilot study was performed to test if a synbiotic Bacillus megaterium/n-3 PUFA formulation increases SPM levels in vivo. Supplementation with a synbiotic capsule product led to significantly increased plasma levels of hydroxy-eicosapentaenoic acids (5-HEPE, 15-HEPE, 18-HEPE) and hydroxy-docosahexaenoic acids (4-HDHA, 7-HDHA) as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in healthy humans. To the best of our knowledge, we report here for the first time the development and in vivo application of a self-sufficient SPM-producing formulation. Further investigations are warranted to confirm and expand these findings, which may create a new class of n-3 PUFA interventions targeting inflammation resolution.


Bacillus megaterium , Fatty Acids, Omega-3 , Synbiotics , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Unsaturated , Humans , Inflammation , Pilot Projects , Sodium Chloride, Dietary
5.
Nutrients ; 13(3)2021 Mar 19.
Article En | MEDLINE | ID: mdl-33808622

This work aimed to define the microbial consortia that are able to digest gluten into non-toxic and non-immunogenic peptides in the human gastrointestinal tract. METHODS: 131 out of 504 tested Bacillus and lactic acid bacteria, specifically Bacillus (64), lactobacilli (63), Pediococcus (1), and Weissella (3), showed strong gastrointestinal resistance and were selected for their PepN, PepI, PepX, PepO, and PepP activities toward synthetic substrates. Based on multivariate analysis, 24 strains were clearly distinct from the other tested strains based on having the highest enzymatic activities. As estimated by RP-HPLC and nano-ESI-MS/MS, 6 cytoplasmic extracts out of 24 selected strains showed the ability to hydrolyze immunogenic epitopes, specifically 57-68 of α9-gliadin, 62-75 of A-gliadin, 134-153 of γ-gliadin, and 57-89 (33-mer) of α2-gliadin. Live and lysed cells of selected strains were combined into different microbial consortia for hydrolyzing gluten under gastrointestinal conditions. Commercial proteolytic enzymes (Aspergillusoryzae E1, Aspergillusniger E2, Bacillussubtilis Veron HPP, and Veron PS proteases) were also added to each microbial consortium. Consortium activity was evaluated by ELISA tests, RP-HPLC-nano-ESI-MS/MS, and duodenal explants from celiac disease patients. RESULTS: two microbial consortia (Consortium 4: Lactiplantibacillus (Lp.) plantarum DSM33363 and DSM33364, Lacticaseibacillus (Lc.) paracasei DSM33373, Bacillussubtilis DSM33298, and Bacilluspumilus DSM33301; and Consortium 16: Lp. plantarum DSM33363 and DSM33364, Lc. paracasei DSM33373, Limosilactobacillusreuteri DSM33374, Bacillusmegaterium DSM33300, B.pumilus DSM33297 and DSM33355), containing commercial enzymes, were able to hydrolyze gluten to non-toxic and non-immunogenic peptides under gastrointestinal conditions. CONCLUSIONS: the results of this study provide evidence that selected microbial consortia could potentially improve the digestion of gluten in gluten-sensitive patients by hydrolyzing the immunogenic peptides during gastrointestinal digestion.


Bacteria/metabolism , Digestion , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/metabolism , Glutens/metabolism , Bacillus , Bacteria/classification , Duodenum/metabolism , Epitopes , Gastrointestinal Tract/microbiology , Glutens/immunology , Humans , Hydrolysis , Microbial Consortia , Peptide Hydrolases/metabolism , Peptides
6.
Nutrients ; 14(1)2021 Dec 29.
Article En | MEDLINE | ID: mdl-35011015

The gut microbiota is a crucial modulator of health effects elicited by food components, with SCFA (short chain fatty acids), especially butyrate, acting as important mediators thereof. We therefore developed a nutritional synbiotic composition targeted at shifting microbiome composition and activity towards butyrate production. An intestinal screening model was applied to identify probiotic Bacillus strains plus various amino acids and peptides with suitable effects on microbial butyrate producers and levels. A pilot study was performed to test if the synbiotic formulation could improve fecal butyrate levels in healthy humans. A combination of Bacillus subtilis DSM (Number of German Collection of Microorganisms and Cell Cultures) 32315 plus L-alanyl-L-glutamine resulted in distinctly increased levels of butyrate and butyrate-producing taxa (Clostridium group XIVa, e.g., Faecalibacterium prausnitzii), both in vitro and in humans. Moreover, circulating lipid parameters (LDL-, and total cholesterol and LDL/HDL cholesterol ratio) were significantly decreased and further metabolic effects such as glucose-modulation were observed. Fasting levels of PYY (Peptide YY) and GLP-1 (Glucagon-like Peptide 1) were significantly reduced. In conclusion, our study indicates that this synbiotic composition may provide an effective and safe tool for stimulation of intestinal butyrate production with effects on e.g., lipid and glucose homeostasis. Further investigations in larger cohorts are warranted to confirm and expand these findings.


Bacillus subtilis , Butyrates/metabolism , Gastrointestinal Microbiome/physiology , Glutamine/administration & dosage , Healthy Volunteers , Intestines/metabolism , Lipid Metabolism , Synbiotics/administration & dosage , Adolescent , Adult , Clostridium , Faecalibacterium prausnitzii , Glucose/metabolism , Homeostasis , Humans , Male , Young Adult
7.
J Nutr Biochem ; 48: 112-119, 2017 10.
Article En | MEDLINE | ID: mdl-28810182

The average intake of the essential trace element selenium (Se) is below the recommendation in most European countries, possibly causing sub-optimal expression of selenoproteins. It is still unclear how a suboptimal Se status may affect health. To mimic this situation, mice were fed one of three physiologically relevant amounts of Se. We focused on the liver, the organ most sensitive to changes in the Se supply indicated by hepatic glutathione peroxidase activity. In addition, liver is the main organ for synthesis of methyl groups and glutathione via one-carbon metabolism. Accordingly, the impact of Se on global DNA methylation, methylation capacity, and gene expression was assessed. We observed higher global DNA methylation indicated by LINE1 methylation, and an increase of the methylation potential as indicated by higher S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio and by elevated mRNA expression of serine hydroxymethyltransferase in both or either of the Se groups. Furthermore, increasing the Se supply resulted in higher plasma concentrations of triglycerides. Hepatic expression of glycolytic and lipogenic genes revealed consistent Se-dependent up-regulation of glucokinase. The sterol regulatory element-binding transcription factor 1 (Srebf1) was also up-regulated by Se. Both effects were confirmed in primary hepatocytes. In contrast to the overall Se-dependent increase of methylation capacity, the up-regulation of Srebf1 expression was paralleled by reduced local methylation of a specific CpG site within the Srebf1 gene. Thus, we provided evidence that Se-dependent effects on lipogenesis involve epigenetic mechanisms.


Carbon/metabolism , DNA Methylation/drug effects , Liver/drug effects , Selenium/pharmacology , Animals , Glycine Hydroxymethyltransferase/genetics , Glycolysis/drug effects , Glycolysis/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Liver/metabolism , Mice, Inbred C57BL , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Triglycerides/blood , Up-Regulation/drug effects
8.
Biol Chem ; 397(8): 709-24, 2016 08 01.
Article En | MEDLINE | ID: mdl-27031218

White adipose tissue (WAT) is actively involved in the regulation of whole-body energy homeostasis via storage/release of lipids and adipokine secretion. Current research links WAT dysfunction to the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). The expansion of WAT during oversupply of nutrients prevents ectopic fat accumulation and requires proper preadipocyte-to-adipocyte differentiation. An assumed link between excess levels of reactive oxygen species (ROS), WAT dysfunction and T2D has been discussed controversially. While oxidative stress conditions have conclusively been detected in WAT of T2D patients and related animal models, clinical trials with antioxidants failed to prevent T2D or to improve glucose homeostasis. Furthermore, animal studies yielded inconsistent results regarding the role of oxidative stress in the development of diabetes. Here, we discuss the contribution of ROS to the (patho)physiology of adipocyte function and differentiation, with particular emphasis on sources and nutritional modulators of adipocyte ROS and their functions in signaling mechanisms controlling adipogenesis and functions of mature fat cells. We propose a concept of ROS balance that is required for normal functioning of WAT. We explain how both excessive and diminished levels of ROS, e.g. resulting from over supplementation with antioxidants, contribute to WAT dysfunction and subsequently insulin resistance.


Adipocytes/metabolism , Adipocytes/pathology , Insulin Resistance , Reactive Oxygen Species/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans
9.
Arch Biochem Biophys ; 595: 113-9, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-27095226

Adequate intake of the essential trace element and micronutrient selenium is thought to be beneficial for maintaining human health. Selenium may modulate a broad spectrum of key biological processes, including the cellular response to oxidative stress, redox signalling, cellular differentiation, the immune response, and protein folding. Biochemical and cellular effects of selenium are achieved through activities of selenocysteine-containing selenoproteins. This small yet essential group comprises proteins encoded by 25 genes in humans, e.g. oxidoreductases such as glutathione peroxidases (GPx) and thioredoxin reductases (TrxR), as well as the iodothyronine deiodinases (DIO) and the plasma selenium transport protein, selenoprotein P (SePP1). Synthetic selenoorganic compounds, including the GPx mimetic ebselen, have also been applied in biological systems in vitro and in vivo; antioxidant and anti-inflammatory actions of ebselen and its history as a drug candidate are summarised here. Furthermore, we discuss several aspects of selenoprotein biochemistry, ranging from their well-known importance for cellular protection against oxidative damage to more recent data that link selenoprotein expression/activity to enterocyte and adipocyte differentiation and function and to (dys)regulation of insulin action and secretion.


Antioxidants/metabolism , Enzymes/metabolism , Selenoproteins/metabolism , Cell Differentiation , Diabetes Mellitus/metabolism , Humans
10.
Arch Biochem Biophys ; 595: 153-60, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-27095233

Peroxynitrite is a strong oxidant and nitrating species that mediates certain biological effects of superoxide and nitrogen monoxide. These biological effects include oxidative damage to proteins as well as the formation of 3-nitrotyrosyl moieties in proteins. As a consequence, such proteins may lose their activity, gain altered function, or become prone to proteolytic degradation - resulting in modulation of cellular protein turnover and in the modulation of signaling cascades. In analogy to hydrogen peroxide, peroxynitrite may be scavenged by selenoproteins like glutathione peroxidase-1 (GPx-1) or by selenocompounds with a GPx-like activity, such as ebselen; in further analogy to H2O2, peroxiredoxins have also been established as contributors to peroxynitrite reduction. This review covers three aspects of peroxynitrite biochemistry, (i) the interaction of selenocompounds/-proteins with peroxynitrite, (ii) peroxynitrite-induced modulation of cellular proteolysis, and (iii) peroxynitrite-induced modulation of cellular signaling.


Peroxynitrous Acid/metabolism , Signal Transduction , Animals , Humans , Insulin/metabolism , Proteolysis
11.
Epigenetics ; 10(3): 179-90, 2015.
Article En | MEDLINE | ID: mdl-25647085

Alterations of epigenetic marks are linked to normal development and cellular differentiation as well as to the progression of common chronic diseases. The plasticity of these marks provides potential for disease therapies and prevention strategies. Macro- and micro-nutrients have been shown to modulate disease risk in part via effects on the epigenome. The essential micronutrient selenium affects human health outcomes, e.g., cancers, cardiovascular and autoimmune diseases, via selenoproteins and through a range of biologically active dietary selenocompounds and metabolism products thereof. This review provides an assessment of the current literature regarding epigenetic effects of dietary and synthetic selenocompounds, which include the modulation of marks and editors of epigenetic information and interference with one-carbon metabolism, which provides the methyl donor for DNA methylation. The relevance of a selenium-epigenome interaction for human health is discussed, and we also indicate where future studies will be helpful to gain a deeper understanding of epigenetic effects elicited by selenium.


Epigenesis, Genetic , Selenium/metabolism , Animals , Carbon/metabolism , DNA/metabolism , DNA Methylation , Histones/metabolism , Humans , Selenium/chemistry
12.
Inflamm Bowel Dis ; 20(6): 1110-9, 2014 Jun.
Article En | MEDLINE | ID: mdl-24694793

Inadequate dietary intake of the essential trace element selenium (Se) is thought to be a risk factor for several chronic diseases associated with oxidative stress and inflammation. Biological actions of Se occur through low-molecular weight metabolites and through selenoproteins. Several key selenoproteins including glutathione peroxidases; selenoproteins M, P, and S; and selenium-binding protein 1 have been detected in the intestine. Interestingly, Se and antioxidant selenoproteins are known to modulate differentiation and function of immune cells and contribute to avoid excessive immune responses. This review discusses the role of Se and intestinal selenoproteins in inflammatory bowel diseases, based on data from human, animal, and in vitro studies. In humans, Se deficiency is commonly observed in patients with Crohn's disease. In animal models of experimental colitis, the Se status was negatively correlated with the severity of the disease. While the cause-effect relationship of these observations remains to be clarified, the beneficial outcome of dietary Se supplementation and an optimization of selenoprotein biosynthesis in murine inflammatory bowel disease models have led to investigations of targets and actions of Se in the gastrointestinal tract. The Se status affects gene expression, signaling pathways, and cellular functions in the small and large intestine as well as the gut microbiome composition. This data, particularly from animal experiments, hold promise that adequate dietary Se supply may counteract chronic intestinal inflammation in humans.


Colitis, Ulcerative/metabolism , Crohn Disease/metabolism , Selenium/metabolism , Selenoproteins/metabolism , Animals , Colitis, Ulcerative/diet therapy , Colitis, Ulcerative/immunology , Crohn Disease/diet therapy , Crohn Disease/immunology , Dietary Supplements , Disease Models, Animal , Humans , Selenium/immunology , Selenoproteins/immunology
13.
Arch Biochem Biophys ; 541: 30-6, 2014 Jan 01.
Article En | MEDLINE | ID: mdl-24157689

The micronutrient selenium and selenium-containing selenoproteins are involved in prevention of inflammation and carcinogenesis in the gut. Selenoprotein P (Sepp1), the plasma selenium transport protein, is secreted primarily from hepatocytes, but Sepp1 mRNA is also abundant in the intestine. By immunofluorescence analysis, we show that Sepp1 levels in epithelial cells of the rat jejunum increase along the crypt-to-villus axis. A different Sepp1 distribution pattern was observed in the rat colon, where the epithelial cells located at the base and at the top of the crypts were similarly positive for Sepp1. In addition, we found pronounced Sepp1 immunoreactivity in CD138-positive plasma cells scattered within the lamina propria of the colon. This hitherto unrecognized presence in terminally differentiated B-cells was corroborated by detection of Sepp1 in plasma cells residing in the rat spleen. Following supplementation with dietary selenium compounds, polarized intestinal epithelial Caco-2 cells secreted Sepp1 into the culture medium across the basolateral membrane. Our data suggest that Sepp1 secreted from epithelial cells may support the intestinal immune system by providing immune cells (including plasma cells) with selenium for the biosynthesis of endogenous selenoproteins.


Epithelial Cells/metabolism , Intestine, Large/cytology , Intestine, Small/cytology , Plasma Cells/metabolism , Selenoprotein P/metabolism , Animals , Caco-2 Cells , Cell Polarity , Epithelial Cells/cytology , Humans , Protein Transport , Rats , Rats, Wistar , Spleen/cytology
14.
Free Radic Biol Med ; 67: 265-77, 2014 Feb.
Article En | MEDLINE | ID: mdl-24275540

Selenoproteins are candidate mediators of selenium-dependent protection against tumorigenesis and inflammation in the gut. Expression and roles of only a limited number of intestinal selenoproteins have been described so far. Selenoprotein S (SelS) has been linked to various inflammatory diseases and is suggested to be involved in endoplasmic reticulum (ER) homeostasis regulation and antioxidative protection in a cell-type-dependent manner, but its protein expression, regulation, and function in the gut are not known. We here analyzed the expression and localization of SelS in the healthy and inflamed gut and studied its regulation and function in intestinal epithelial cell lines. SelS was expressed in the intestinal epithelium of the small and large intestine and colocalized with markers of Paneth cells and macrophages. It was upregulated in inflamed ileal tissue from Crohn's disease patients and in two models of experimental colitis in mice. We detected SelS in colorectal cell lines, where it colocalized with the ER marker calnexin. SelS protein expression was unaffected by enterocytic differentiation but increased in response to selenium supplementation and after treatment with the ER stress inducer tunicamycin. On the other hand, depletion of SelS in LS174T, HT29, and Caco-2 cells by RNA interference did not cause or modulate ER stress and had no effect on hydrogen peroxide-induced cell death. In summary, we introduce SelS as a novel marker of Paneth cells and intestinal ER stress. Although it is upregulated in Crohn's disease, its role in disease etiology remains to be established.


Crohn Disease/metabolism , Endoplasmic Reticulum Stress/drug effects , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Membrane Proteins/metabolism , Selenoproteins/metabolism , Tunicamycin/pharmacology , Animals , Biomarkers/metabolism , Biopsy , Calnexin/genetics , Calnexin/metabolism , Cell Line , Crohn Disease/pathology , Epithelial Cells/pathology , Gene Expression , Humans , Intestines/pathology , Macrophages/metabolism , Macrophages/pathology , Membrane Proteins/genetics , Mice , Paneth Cells/metabolism , Paneth Cells/pathology , Selenoproteins/genetics
15.
Antioxid Redox Signal ; 19(2): 181-91, 2013 Jul 10.
Article En | MEDLINE | ID: mdl-23421468

SIGNIFICANCE: Adequate and supranutritional selenium (Se) intake, maintaining full expression of selenoproteins, has been assumed to be beneficial for human health with respect to prevention of cancer. Strikingly, the effectiveness of dietary Se supplementation depends on many factors: baseline Se status, age, gender, and genetic background of an individual; type of cancer; and time point of intervention in addition to metabolic conversion and dose of applied Se compounds. RECENT ADVANCES: Se intake levels for optimization of plasma selenoproteins in humans have been delineated. Regulation, function, and genetic variants of several selenoproteins have been characterized in the intestine, where Se-mediated prevention of colorectal cancer appears to be particularly promising. CRITICAL ISSUES: Numerous cell culture and animal studies indicate anticarcinogenic capacity of various Se compounds but, at present, the outcome of human studies is inconsistent and, in large part, disappointing. Moreover, supranutritional Se intake may even trigger adverse health effects, possibly increasing the risk for Type 2 diabetes in Se-replete populations. FUTURE DIRECTIONS: To improve protocols for the use of Se in cancer prevention, knowledge on cellular and systemic actions of Se compounds needs to be broadened and linked to individual-related determinants such as the occurrence of variants in selenoprotein genes and the Se status. Based on better mechanistic insight, populations and individuals that may benefit most from dietary Se supplementation need to be defined and studied in suitably planned intervention trials.


Anticarcinogenic Agents/pharmacology , Neoplasms/prevention & control , Selenium Compounds/pharmacology , Selenium/pharmacology , Animals , Dietary Supplements , Humans
16.
J Mol Endocrinol ; 50(1): 31-42, 2013 Feb.
Article En | MEDLINE | ID: mdl-23125459

Progressive loss of pancreatic ß-cell mass is a crucial feature of type 2 diabetes mellitus. As ß-cells express very low amounts of the antioxidant enzymes catalase and glutathione peroxidase (GPx), they appear to be particularly vulnerable to oxidative damage in the pathogenesis of diabetes. Here, we investigated the pancreatic expression pattern and regulation of selenoprotein P (Sepp1), which may serve as an additional antioxidant enzyme inside and outside of cells. Sepp1 was detected in rodent pancreas by immunofluorescence and real-time RT-PCR. Regulation of Sepp1 biosynthesis in INS-1 rat insulinoma cells was investigated by real-time RT-PCR, luciferase gene reporter assay, and immunoblotting. Sepp1 and Gpx1 gene expressions in rat pancreas were 58 and 22% respectively of the liver values. Pancreatic Sepp1 expression was restricted to the endocrine tissue, with Sepp1 being present in the α- and ß-cells of mouse islets. In INS-1 insulinoma cells, Sepp1 expression was stimulated by the selenium compound sodium selenate and diminished in the presence of high glucose (16.7 vs 5  mM) concentrations. Sepp1 mRNA stability was also lowered at 16.7  mM glucose. Moreover, Sepp1 mRNA levels were decreased in isolated murine islets cultured in high-glucose (22  mM) medium compared with normal glucose (5.5  mM) medium. Pancreatic Sepp1 expression was elevated upon treatment of mice with the ß-cell toxin streptozotocin. This study shows that pancreatic islets express relatively high levels of Sepp1 that may fulfill a function in antioxidant protection of ß-cells. Downregulation of Sepp1 expression by high glucose might thus contribute to glucotoxicity in ß-cells.


Islets of Langerhans/metabolism , Selenoprotein P/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Down-Regulation , Fluorescent Antibody Technique , Genes, Reporter , Glucose/administration & dosage , Mice , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Selenoprotein P/biosynthesis , Selenoprotein P/genetics , Streptozocin/pharmacology
17.
J Inorg Biochem ; 105(6): 812-20, 2011 Jun.
Article En | MEDLINE | ID: mdl-21497580

Supranutritional selenium (Se) intake and high serum Se levels have been associated epidemiologically with increased risk for type 2 diabetes, suggesting adverse effects of dietary Se compounds and/or antioxidant selenoenzymes on the sensitivity of target tissues for insulin. Here, we compared the capability of inorganic (sodium selenite and sodium selenate) and organic (selenomethionine and methylseleninic acid (MSeA)) Se compounds to interfere with insulin signaling in rat L6 myotubes, differentiated skeletal muscle cells. When applied at doses of 1 µM, only selenite and MSeA were capable of delaying insulin-induced phosphorylation of protein kinase B (Akt) and attenuating insulin-induced phosphorylation of forkhead box class O transcription factors FoxO1a and FoxO3. Insulin-stimulated glucose uptake was lowered by selenite and MSeA as well. Even though all tested Se compounds strongly stimulated expression/activity of the cellular selenoproteins glutathione peroxidase 1 and selenoprotein W, selenite and MSeA were the most efficiently utilized Se donors. Moreover, at doses of 1 µM, only selenite and MSeA had a significant inhibitory effect on generation of intracellular reactive oxygen species (ROS). These results suggest that the Se(IV) compounds selenite and MSeA may impair the insulin sensitivity of myocytes by influencing cellular redox homeostasis.


Insulin/metabolism , Muscle, Skeletal/metabolism , Selenium Compounds/pharmacology , Signal Transduction , Animals , Forkhead Box Protein O3 , Forkhead Transcription Factors/metabolism , Humans , Muscle Fibers, Skeletal/metabolism , Nerve Tissue Proteins , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reactive Oxygen Species/metabolism , Selenoproteins/metabolism
18.
J Clin Biochem Nutr ; 48(1): 40-5, 2011 Jan.
Article En | MEDLINE | ID: mdl-21297910

The essential trace element selenium has long been considered to exhibit anti-diabetic and insulin-mimetic properties, but recent epidemiological studies indicated supranutritional selenium intake and high plasma selenium levels as possible risk factors for development of type 2 diabetes, pointing to adverse effects of selenium on carbohydrate metabolism in humans. However, increased plasma selenium levels might be both a consequence and a cause of diabetes. We summarize current evidence for an interference of selenium compounds with insulin-regulated molecular pathways, most notably the phosphoinositide-3-kinase/protein kinase B signaling cascade, which may underlie some of the pro- and anti-diabetic actions of selenium. Furthermore, we discuss reports of hyperinsulinemia, hyperglycemia and insulin resistance in mice overexpressing the selenoenzyme glutathione peroxidase 1. The peroxisomal proliferator-activated receptor gamma coactivator 1α represents a key regulator for biosynthesis of the physiological selenium transporter, selenoprotein P, as well as for hepatic gluconeogenesis. As proliferator-activated receptor gamma coactivator 1α has been shown to be up-regulated in livers of diabetic animals and to promote insulin resistance, we hypothesize that dysregulated pathways in carbohydrate metabolism and a disturbance of selenium homeostasis are linked via proliferator-activated receptor gamma coactivator 1α.

19.
J Biol Chem ; 286(12): 10764-72, 2011 Mar 25.
Article En | MEDLINE | ID: mdl-21252226

Glutathione peroxidase 4 (GPx4), an abundant selenoenzyme, is ubiquitously expressed in a tissue-, cell- and differentiation-dependent manner, and it is localized in cytoplasmic, mitochondrial, and nuclear cellular compartments. Here, we report cytoplasmic and nuclear localization of GPx4 in Caco-2 intestinal epithelial cells. Enterocytic differentiation of Caco-2 cells triggers an increase in GPx4 mRNA and protein levels, mediated by enhanced promoter activity. We identified a combined cAMP response element (CREB) and CCAAT/enhancer binding protein (C/EBP) site as critical for the differentiation-triggered GPx4 promoter activity. Induction of GPx4 correlated with C/EBPα transcript levels during differentiation, suggesting a role of C/EBPα as regulator of enterocytic GPx4 expression. Consistent with the in vitro results, GPx4 protein was detected in cytoplasmic and nuclear compartments of enterocytes in human intestinal epithelia. GPx4 is uniformly expressed in colonic crypts and is differentially expressed along the crypt-to-villus axis in the small intestine with a more pronounced expression of GPx4 in the upper villi, which contain fully differentiated enterocytes. These data suggest that intestinal GPx4 expression is modulated by the enterocytic differentiation program, and the results support a direct role of nuclear GPx4 in the (selenium-dependent) prevention of oxidative damage in the gastrointestinal tract.


Cell Differentiation/physiology , Cell Nucleus/enzymology , Cytoplasm/enzymology , Enterocytes/enzymology , Gene Expression Regulation, Enzymologic/physiology , Glutathione Peroxidase/biosynthesis , Response Elements/physiology , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Caco-2 Cells , Enterocytes/cytology , Gastrointestinal Tract/enzymology , Glutathione Peroxidase/genetics , Humans , Oxidation-Reduction , Phospholipid Hydroperoxide Glutathione Peroxidase
20.
Free Radic Biol Med ; 49(5): 777-85, 2010 Sep 01.
Article En | MEDLINE | ID: mdl-20542496

Selenoprotein P (SeP), serving as selenium transporter and extracellular antioxidant, is assumed to have a protective role in the gastrointestinal tract, which is particularly susceptible to oxidative damage. Decreased SeP mRNA levels have been found in colon cancer; however, information on the control of intestinal SeP biosynthesis is scarce. We analyzed SeP biosynthesis in human intestinal epithelial Caco-2 cells subject to differentiation from crypt- to villous-like enterocytes. In the course of Caco-2 cell differentiation, SeP mRNA expression and secretion increased concomitant with three regulators of SeP transcription: hepatocyte nuclear factor-4alpha, forkhead box class O1a, and peroxisomal proliferator-activated receptor-gamma coactivator 1alpha. Treatment of differentiated Caco-2 cells with the proinflammatory cytokines IL-1beta, TNF-alpha, and IFN-gamma caused a down-regulation of SeP biosynthesis, resulting from induction of nitric oxide synthase 2. These observations were corroborated by decreased SeP mRNA levels in the colon of dextran sodium sulfate-treated mice, an animal model of experimental colitis. We conclude that inflammation of the intestinal mucosa causes a decline in locally produced selenoprotein P in the colon that eventually may contribute to the emergence of inflammatory bowel disease-related colorectal cancer.


Cytokines/pharmacology , Inflammation Mediators/pharmacology , Intestines/drug effects , Nitric Oxide Synthase Type II/metabolism , Selenoprotein P/biosynthesis , Animals , Caco-2 Cells , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line, Tumor , Down-Regulation/drug effects , Enzyme Induction/drug effects , Female , Humans , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Selenoprotein P/genetics
...