Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37718477

ABSTRACT

There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such as mesenchymal stromal cells (MSCs), into a potential bone-graft material could help to fulfill clinical demand. However, osteogenesis of MSCs can typically require long culture periods that are impractical in a clinical setting and can lead to significant cost. Investigation into strategies that optimize cell production is essential. Here, we use the piezoelectric copolymer poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE), functionalized with a poly(ethyl acrylate) (PEA) coating that drives fibronectin network formation, to enhance MSC adhesion and to present growth factors in the solid phase. Dynamic electrical cues are then incorporated, via a nanovibrational bioreactor, and the MSC response to electromechanical stimulation is investigated.

2.
ACS Appl Bio Mater ; 6(5): 1755-1762, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37067245

ABSTRACT

Fibronectin (FN) mediates cell-material interactions during events such as tissue repair, and therefore the biomimetic modeling of this protein in vitro benefits regeneration. The nature of the interface is crucial in determining cell adhesion, morphology, and differentiation. Poly(ethyl acrylate) (PEA) spontaneously organizes FN into biological nanonetworks, resulting in exceptional bone regeneration in animal models. Spontaneous network organization of FN is also observed in poly(buthyl acrylate) (PBA) substrates that have higher surface mobility than PEA. C2C12 myoblasts differentiate efficiently on PEA and PBA substrates. In this study, we investigate if intermediate surface mobilities between PEA and PBA induce cell differentiation more efficiently than PEA. A family of P(EA-co-BA) copolymers were synthesized in the entire range of compositions to finely tune surface mobility between PEA and PBA. Surface characterization demonstrates that FN mobility steadily increased with the PBA content. All compositions allowed the biological organization of FN with similar exposure of cell binding domains. C2C12 myoblasts adhered well in all the materials, with higher focal adhesions in PEA and PBA. The increase of the interfacial mobility had an impact in cell adhesion by increasing the number of FAs per cell. In addition, cell differentiation decreased proportionally with surface mobility, from PEA to PBA.


Subject(s)
Acrylates , Animals , Cell Adhesion , Cell Differentiation , Acrylates/pharmacology
3.
Biomaterials ; 280: 121263, 2022 01.
Article in English | MEDLINE | ID: mdl-34810036

ABSTRACT

Post-operative infection is a major complication in patients recovering from orthopaedic surgery. As such, there is a clinical need to develop biomaterials for use in regenerative surgery that can promote mesenchymal stem cell (MSC) osteospecific differentiation and that can prevent infection caused by biofilm-forming pathogens. Nanotopographical approaches to pathogen control are being identified, including in orthopaedic materials such as titanium and its alloys. These topographies use high aspect ratio nanospikes or nanowires to prevent bacterial adhesion but these features also significantly reduce MSC adhesion and activity. Here, we use a poly (ethyl acrylate) (PEA) polymer coating on titanium nanowires to spontaneously organise fibronectin (FN) and to deliver bone morphogenetic protein 2 (BMP2) to enhance MSC adhesion and osteospecific signalling. Using a novel MSC-Pseudomonas aeruginosa co-culture, we show that the coated nanotopographies protect MSCs from cytotoxic quorum sensing and signalling molecules, enhance MSC adhesion and osteoblast differentiation and reduce biofilm formation. We conclude that the PEA polymer-coated nanotopography can both support MSCs and prevent pathogens from adhering to a biomaterial surface, thus protecting from biofilm formation and bacterial infection, and supporting osteogenic repair.


Subject(s)
Fibronectins , Mesenchymal Stem Cells , Bacterial Adhesion , Biofilms , Cell Adhesion , Cell Differentiation , Fibronectins/metabolism , Humans , Osteogenesis , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL