Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
medRxiv ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38946969

ABSTRACT

Immune responses against neuraminidase (NA) are of great interest for developing more robust influenza vaccines, but the role of anti-NA antibodies on influenza infectivity has not been established. We conducted household transmission studies in Managua, Nicaragua to examine the impact of anti-NA antibodies on influenza A/H3N2 susceptibility and infectivity. Analyzing these data with mathematical models capturing household transmission dynamics and their drivers, we estimated that having higher preexisting antibody levels against the hemagglutinin (HA) head, HA stalk, and NA was associated with reduced susceptibility to infection (relative susceptibility 0.67, 95% Credible Interval [CrI] 0.50-0.92 for HA head; 0.59, 95% CrI 0.42-0.82 for HA stalk; and 0.56, 95% CrI 0.40-0.77 for NA). Only anti-NA antibodies were associated with reduced infectivity (relative infectivity 0.36, 95% CrI 0.23-0.55). These benefits from anti-NA immunity were observed even among individuals with preexisting anti-HA immunity. These results suggest that influenza vaccines designed to elicit NA immunity in addition to hemagglutinin immunity may not only contribute to protection against infection but reduce infectivity of vaccinated individuals upon infection.

2.
J Infect Dis ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934845

ABSTRACT

BACKGROUND: Seasonal influenza remains a global public health concern. A messenger RNA (mRNA)-based quadrivalent seasonal influenza vaccine, mRNA-1010, was investigated in a 3-part, first-in-human, phase 1/2 clinical trial. METHODS: In Parts 1-3 of this stratified, observer-blind study, adults aged ≥18 years old were randomly assigned to receive a single dose (6.25 µg to 200 µg) of mRNA-1010 or placebo (Part 1) or an active comparator (Afluria; Parts 2-3). Primary study objectives were assessment of safety, reactogenicity, and humoral immunogenicity of mRNA-1010, placebo (Part 1), or active comparator (Parts 2-3). Exploratory endpoints included assessment of cellular immunogenicity (Part 1) and antigenic breadth against vaccine heterologous (A/H3N2) strains (Parts 1-2). RESULTS: In all study parts, solicited adverse reactions were reported more frequently for mRNA-1010 than placebo or Afluria and most were grade 1 or 2 in severity. No vaccine-related serious adverse events or deaths were reported. In Parts 1-2, a single dose of mRNA-1010 (25 µg to 200 µg) elicited robust Day 29 hemagglutination inhibition (HAI) titers that persisted through 6 months. In Part 3, lower doses of mRNA-1010 (6.25 µg to 25 µg) elicited Day 29 HAI titers that were higher or comparable to Afluria for influenza A strains. Compared with Afluria, mRNA-1010 (50 µg) elicited broader A/H3N2 antibody responses (Part 2). mRNA-1010 induced greater T-cell responses than placebo at Day 8 that were sustained or stronger at Day 29 (Part 1). CONCLUSIONS: Data support the continued development of mRNA-1010 as a seasonal influenza vaccine. CLINICALTRIALS.GOV IDENTIFIER: NCT04956575 (https://clinicaltrials.gov/study/NCT04956575).

3.
J Infect Dis ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723107

ABSTRACT

BACKGROUND: Influenza virus remains a threat to human health, but gaps remain in our knowledge of the humoral correlates of protection against influenza virus A/H3N2, limiting our ability to generate effective, broadly protective vaccines. The role of antibodies against the hemagglutinin (HA) stalk, a highly conserved but immunologically sub-dominant region, has not been established for influenza virus A/H3N2. METHODS: Household transmission studies were conducted in Managua, Nicaragua across three influenza seasons. Household contacts were tested for influenza virus infection using RT-PCR. We compared pre-existing antibody levels against full-length hemagglutinin (FLHA), HA stalk, and neuraminidase (NA) measured by enzyme-linked immunosorbent assay (ELISA), along with HA inhibition assay (HAI) titers, between infected and uninfected participants. RESULTS: A total of 899 individuals participated in household activation, with 329 infections occurring. A four-fold increase in initial HA stalk titers was independently associated with an 18% decrease in the risk of infection (OR=0.82, 95%CI 0.68-0.98, p=0.04). In adults, anti-HA stalk antibodies were independently associated with protection (OR=0.72, 95%CI 0.54-0.95, p=0.02). However, in 0-14-year-olds, anti-NA antibodies (OR=0.67, 95%CI 0.53-0.85, p<0.01) were associated with protection against infection, but anti-HA stalk antibodies were not. CONCLUSIONS: The HA stalk is an independent correlate of protection against A/H3N2 infection, though this association is age dependent. Our results support the continued exploration of the HA stalk as a target for broadly protective influenza vaccines but suggest that the relative benefits may depend on age and influenza virus exposure history.

4.
J Virol ; 97(11): e0164622, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37916834

ABSTRACT

IMPORTANCE: Currently, many groups are focusing on isolating both neutralizing and non-neutralizing antibodies to the mutation-prone hemagglutinin as a tool to treat or prevent influenza virus infection. Less is known about the level of protection induced by non-neutralizing antibodies that target conserved internal influenza virus proteins. Such non-neutralizing antibodies could provide an alternative pathway to induce broad cross-reactive protection against multiple influenza virus serotypes and subtypes by partially overcoming influenza virus escape mediated by antigenic drift and shift. Accordingly, more information about the level of protection and potential mechanism(s) of action of non-neutralizing antibodies targeting internal influenza virus proteins could be useful for the design of broadly protective and universal influenza virus vaccines.


Subject(s)
Antibodies, Monoclonal , Influenza A virus , Nucleocapsid Proteins , Viral Matrix Proteins , Humans , Antibodies, Monoclonal/immunology , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza, Human , Viral Matrix Proteins/immunology , Nucleocapsid Proteins/immunology
5.
Immunity ; 56(8): 1927-1938.e8, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37506693

ABSTRACT

Neuraminidase (NA) is one of the two influenza virus surface glycoproteins, and antibodies that target it are an independent correlate of protection. However, our current understanding of NA antigenicity is incomplete. Here, we describe human monoclonal antibodies (mAbs) from a patient with a pandemic H1N1 virus infection in 2009. Two mAbs exhibited broad reactivity and inhibited NA enzyme activity of seasonal H1N1 viruses circulating before and after 2009, as well as viruses with avian or swine N1s. The mAbs provided robust protection from lethal challenge with human H1N1 and avian H5N1 viruses in mice, and both target an epitope on the lateral face of NA. In summary, we identified two broadly protective NA antibodies that share a novel epitope, inhibited NA activity, and provide protection against virus challenge in mice. Our work reaffirms that NA should be included as a target in future broadly protective or universal influenza virus vaccines.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Influenza A Virus, H1N1 Subtype , Influenza, Human , Neuraminidase , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , Neuraminidase/chemistry , Neuraminidase/metabolism , Humans , Immunoglobulin Fab Fragments/chemistry , Cryoelectron Microscopy , Epitopes , Mice, Inbred BALB C , Animals , Mice , Influenza, Human/drug therapy , Disease Models, Animal
6.
Nat Commun ; 14(1): 3631, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336877

ABSTRACT

Despite vaccine availability, influenza remains a substantial global public health concern. Here, we report interim findings on the primary and secondary objectives of the safety, reactogenicity, and humoral immunogenicity of a quadrivalent messenger RNA (mRNA) vaccine against seasonal influenza, mRNA-1010, from the first 2 parts of a 3-part, first-in-human, phase 1/2 clinical trial in healthy adults aged ≥18 years (NCT04956575). In the placebo-controlled Part 1, a single dose of mRNA-1010 (50 µg, 100 µg, or 200 µg) elicited hemagglutination inhibition (HAI) titers against vaccine-matched strains. In the active-comparator-controlled Part 2, mRNA-1010 (25 µg, 50 µg, or 100 µg) elicited higher HAI titers than a standard dose, inactivated seasonal influenza vaccine for influenza A strains and comparable HAI titers for influenza B strains. No safety concerns were identified; solicited adverse reactions were dose-dependent and more frequent after receipt of mRNA-1010 than the active comparator. These interim data support continued development of mRNA-1010.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Adult , Adolescent , Influenza, Human/prevention & control , Seasons , Vaccines, Inactivated/adverse effects , Antibodies, Viral , Hemagglutination Inhibition Tests , Vaccines, Combined , Double-Blind Method
7.
Obstet Gynecol ; 141(6): 1199-1202, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37141599

ABSTRACT

We examined differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody responses in pregnant individuals with natural, vaccine-induced, or combined immunity. Participants had live or nonlive births between 2020 and 2022, were seropositive (SARS-CoV-2 spike protein, anti-S), and had available mRNA vaccination and infection information (n=260). We compared titer levels among three immunity profiles: 1) natural immunity (n=191), 2) vaccine-induced immunity (n=37), and 3) combined immunity (ie, natural and vaccine-induced immunity; n=32). We applied linear regression to compare anti-S titers between the groups, controlling for age, race and ethnicity, and time between vaccination or infection (whichever came last) and sample collection. Anti-S titers were 57.3% and 94.4% lower among those with vaccine-induced and natural immunity, respectively, compared with those with combined immunity ( P <.001, P =.005).


Subject(s)
COVID-19 Vaccines , COVID-19 , Pregnancy Complications, Infectious , Female , Humans , Pregnancy , Antibodies, Viral , COVID-19/prevention & control , Pregnancy Complications, Infectious/prevention & control , SARS-CoV-2 , Vaccination , COVID-19 Vaccines/administration & dosage
8.
NPJ Vaccines ; 7(1): 160, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496417

ABSTRACT

A phase 1 clinical trial to test the immunogenicity of a chimeric group 1 HA (cHA) universal influenza virus vaccine targeting the conserved stalk domain of the hemagglutinin of influenza viruses was carried out. Vaccination with adjuvanted-inactivated vaccines induced high anti-stalk antibody titers. We sought to identify gene expression signatures that correlate with such induction. Messenger-RNA sequencing in whole blood was performed on the peripheral blood of 53 vaccinees. We generated longitudinal data on the peripheral blood of 53 volunteers, at early (days 3 and 7) and late (28 days) time points after priming and boosting with cHAs. Differentially expressed gene analysis showed no differences between placebo and live-attenuated vaccine groups. However, an upregulation of genes involved in innate immune responses and type I interferon signaling was found at day 3 after vaccination with inactivated adjuvanted formulations. Cell type deconvolution analysis revealed a significant enrichment for monocyte markers and different subsets of dendritic cells as mediators for optimal B cell responses and significant increase of anti-stalk antibodies in sera. A significant upregulation of immunoglobulin-related genes was only observed after administration of adjuvanted vaccines (either as primer or booster) with specific induction of anti-stalk IGVH1-69. This approach informed of specific immune signatures that correlate with robust anti-stalk antibody responses, while also helping to understand the regulation of gene expression induced by cHA proteins under different vaccine regimens.

9.
Nat Commun ; 13(1): 7864, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543789

ABSTRACT

Contemporary influenza A H3N2 viruses circulating since 2016 have acquired a glycosylation site in the neuraminidase in close proximity to the enzymatic active site. Here, we investigate if this S245N glycosylation site, as a result of antigenic evolution, can impact binding and function of human monoclonal antibodies that target the conserved active site. While we find that a reduction in the inhibitory ability of neuraminidase active site binders is measurable, this class of broadly reactive monoclonal antibodies maintains protective efficacy in vivo.


Subject(s)
Antibodies, Monoclonal , Influenza A Virus, H3N2 Subtype , Neuraminidase , Humans , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Catalytic Domain/immunology , Catalytic Domain/physiology , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/metabolism , Influenza, Human/immunology , Influenza, Human/metabolism , Neuraminidase/chemistry , Neuraminidase/immunology
10.
NPJ Vaccines ; 7(1): 103, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36042229

ABSTRACT

Current seasonal and pre-pandemic influenza vaccines induce short-lived predominantly strain-specific and limited heterosubtypic responses. To better understand how vaccine adjuvants AS03 and MF59 may provide improved antibody responses to vaccination, we interrogated serum from subjects who received 2 doses of inactivated monovalent influenza A/Indonesia/05/2005 vaccine with or without AS03 or MF59 using hemagglutinin (HA) microarrays (NCT01317758 and NCT01317745). The arrays were designed to reflect both full-length and globular head HA derived from 17 influenza A subtypes (H1 to H16 and H18) and influenza B strains. We observed significantly increased strain-specific and broad homo- and heterosubtypic antibody responses with both AS03 and MF59 adjuvanted vaccination with AS03 achieving a higher titer and breadth of IgG responses relative to MF59. The adjuvanted vaccine was also associated with the elicitation of stalk-directed antibody. We established good correlation of the array antibody responses to H5 antigens with standard HA inhibition and microneutralization titers.

11.
Nat Commun ; 13(1): 3921, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798721

ABSTRACT

Due to differences in human and murine angiotensin converting enzyme 2 (ACE-2) receptor, initially available SARS-CoV-2 isolates could not infect mice. Here we show that serial passaging of USA-WA1/2020 strain in mouse lungs results in "mouse-adapted" SARS-CoV-2 (MA-SARS-CoV-2) with mutations in S, M, and N genes, and a twelve-nucleotide insertion in the S gene. MA-SARS-CoV-2 infection causes mild disease, with more pronounced morbidity depending on genetic background and in aged and obese mice. Two mutations in the S gene associated with mouse adaptation (N501Y, H655Y) are present in SARS-CoV-2 variants of concern (VoCs). N501Y in the receptor binding domain of viruses of the B.1.1.7, B.1.351, P.1 and B.1.1.529 lineages (Alpha, Beta, Gamma and Omicron variants) is associated with high transmissibility and allows VoCs to infect wild type mice. We further show that S protein mutations of MA-SARS-CoV-2 do not affect neutralization efficiency by human convalescent and post vaccination sera.


Subject(s)
COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Aged , Animals , COVID-19/virology , Humans , Immune Sera , Mice , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
12.
Paediatr Perinat Epidemiol ; 36(4): 466-475, 2022 07.
Article in English | MEDLINE | ID: mdl-34806193

ABSTRACT

BACKGROUND: The COVID-19 pandemic is an ongoing global health threat, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Questions remain about how SARS-CoV-2 impacts pregnant individuals and their children. OBJECTIVE: To expand our understanding of the effects of SARS-CoV-2 infection during pregnancy on pregnancy outcomes, regardless of symptomatology, by using serological tests to measure IgG antibody levels. METHODS: The Generation C Study is an ongoing prospective cohort study conducted at the Mount Sinai Health System. All pregnant individuals receiving obstetrical care at the Mount Sinai Healthcare System from 20 April 2020 onwards are eligible for participation. For the current analysis, we included participants who had given birth to a liveborn singleton infant on or before 22 September 2020. For each woman, we tested the latest prenatal blood sample available to establish seropositivity using a SARS-CoV-2 serologic enzyme-linked immunosorbent assay. Additionally, RT-PCR testing was performed on a nasopharyngeal swab taken during labour. Pregnancy outcomes of interest (i.e., gestational age at delivery, preterm birth, small for gestational age, Apgar scores, maternal and neonatal intensive care unit admission, and length of neonatal hospital stay) and covariates were extracted from medical records. Excluding individuals who tested RT-PCR positive at delivery, we conducted crude and adjusted regression models to compare antibody positive with antibody negative individuals at delivery. We stratified analyses by race/ethnicity to examine potential effect modification. RESULTS: The SARS-CoV-2 seroprevalence based on IgG measurement was 16.4% (95% confidence interval 13.7, 19.3; n=116). Twelve individuals (1.7%) were SARS-CoV-2 RT-PCR positive at delivery. Seropositive individuals were generally younger, more often Black or Hispanic, and more often had public insurance and higher pre-pregnancy BMI compared with seronegative individuals. None of the examined pregnancy outcomes differed by seropositivity, overall or stratified by race/ethnicity. CONCLUSION: Seropositivity for SARS-CoV-2 without RT-PCR positivity at delivery (suggesting that infection occurred earlier during pregnancy) was not associated with selected adverse maternal or neonatal outcomes among live births in a cohort sample from New York City.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Premature Birth , COVID-19/diagnosis , COVID-19/epidemiology , Child , Cohort Studies , Female , Humans , Infant, Newborn , Pandemics , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Pregnancy Outcome/epidemiology , Premature Birth/epidemiology , Prospective Studies , SARS-CoV-2 , Seroepidemiologic Studies
13.
Heliyon ; 7(12): e08444, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34841098

ABSTRACT

A novel clinical assay for the detection and quantitation of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was adapted from an in-house, research-based enzyme-linked immunosorbent assay (ELISA). Development and validation were performed under regulatory guidelines, and the test obtained emergency use authorization (EUA) from the New York State Department of Health (NYSDOH) and the Food and Drug Administration (FDA). The Mount Sinai coronavirus disease 2019 (COVID-19) antibody assay is an orthogonal, quantitative direct ELISA test which detects antibodies reactive to the receptor binding domain (RBD) and the spike protein of the novel SARS-CoV-2. The assay is performed on 96-well plates coated with either SARS-CoV-2 recombinant RBD or spike proteins. The test is divided into two stages, a qualitative screening assay against RBD and a quantitative assay against the full-length spike protein. The test uses pooled high titer serum as a reference standard. Negative pre-COVID-19 and positive post-COVID-19, PCR-confirmed specimens were incorporated in each ELISA test run, and the assays were performed independently at two different locations. The Mount Sinai COVID-19 serology performed with high sensitivity and specificity, 92.5% (95% CI: 0.785-0.980) and 100% (CI: 0.939-1.000) respectively. Between-run precision was assessed with a single run repeated over 22 days; and within-run precision was assessed with 10 replicates per day over 22 days. Both were within reported acceptance criteria (CV ≤ 20%). This population-based study reveals the applicability and reliability of this novel orthogonal COVID-19 serology test for the detection and quantitation of antibodies against SARS-CoV-2, allowing a broad set of clinical applications, including the broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different population subsets.

14.
NPJ Vaccines ; 6(1): 89, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34262052

ABSTRACT

In a phase 1 randomized, single-center clinical trial, inactivated influenza virus vaccine delivered through dissolvable microneedle patches (MNPs) was found to be safe and immunogenic. Here, we compare the humoral and cellular immunologic responses in a subset of participants receiving influenza vaccination by MNP to the intramuscular (IM) route of administration. We collected serum, plasma, and peripheral blood mononuclear cells in 22 participants up to 180 days post-vaccination. Hemagglutination inhibition (HAI) titers and antibody avidity were similar after MNP and IM vaccination, even though MNP vaccination used a lower antigen dose. MNPs generated higher neuraminidase inhibition (NAI) titers for all three influenza virus vaccine strains tested and triggered a larger percentage of circulating T follicular helper cells (CD4 + CXCR5 + CXCR3 + ICOS + PD-1+) compared to the IM route. Our study indicates that inactivated influenza virus vaccination by MNP produces humoral and cellular immune response that are similar or greater than IM vaccination.

15.
Nat Commun ; 12(1): 3781, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145263

ABSTRACT

In addition to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), humans are also susceptible to six other coronaviruses, for which consecutive exposures to antigenically related and divergent seasonal coronaviruses are frequent. Despite the prevalence of COVID-19 pandemic and ongoing research, the nature of the antibody response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here we longitudinally profile the early humoral immune response against SARS-CoV-2 in hospitalized coronavirus disease 2019 (COVID-19) patients and quantify levels of pre-existing immunity to OC43, HKU1 and 229E seasonal coronaviruses, and find a strong back-boosting effect to conserved but not variable regions of OC43 and HKU1 betacoronaviruses spike protein. However, such antibody memory boost to human coronaviruses negatively correlates with the induction of IgG and IgM against SARS-CoV-2 spike and nucleocapsid protein. Our findings thus provide evidence of immunological imprinting by previous seasonal coronavirus infections that can potentially modulate the antibody profile to SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Antibodies, Viral/immunology , Antibody Formation , COVID-19/blood , COVID-19/transmission , COVID-19/virology , Cross Reactions , Female , Humans , Male , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
17.
Lancet Respir Med ; 9(7): 712-720, 2021 07.
Article in English | MEDLINE | ID: mdl-33865504

ABSTRACT

BACKGROUND: Whether young adults who are infected with SARS-CoV-2 are at risk of subsequent infection is uncertain. We investigated the risk of subsequent SARS-CoV-2 infection among young adults seropositive for a previous infection. METHODS: This analysis was performed as part of the prospective COVID-19 Health Action Response for Marines study (CHARM). CHARM included predominantly male US Marine recruits, aged 18-20 years, following a 2-week unsupervised quarantine at home. After the home quarantine period, upon arrival at a Marine-supervised 2-week quarantine facility (college campus or hotel), participants were enrolled and were assessed for baseline SARS-CoV-2 IgG seropositivity, defined as a dilution of 1:150 or more on receptor-binding domain and full-length spike protein ELISA. Participants also completed a questionnaire consisting of demographic information, risk factors, reporting of 14 specific COVID-19-related symptoms or any other unspecified symptom, and brief medical history. SARS-CoV-2 infection was assessed by PCR at weeks 0, 1, and 2 of quarantine and participants completed a follow-up questionnaire, which included questions about the same COVID-19-related symptoms since the last study visit. Participants were excluded at this stage if they had a positive PCR test during quarantine. Participants who had three negative swab PCR results during quarantine and a baseline serum serology test at the beginning of the supervised quarantine that identified them as seronegative or seropositive for SARS-CoV-2 then went on to basic training at Marine Corps Recruit Depot-Parris Island. Three PCR tests were done at weeks 2, 4, and 6 in both seropositive and seronegative groups, along with the follow-up symptom questionnaire and baseline neutralising antibody titres on all subsequently infected seropositive and selected seropositive uninfected participants (prospective study period). FINDINGS: Between May 11, 2020, and Nov 2, 2020, we enrolled 3249 participants, of whom 3168 (98%) continued into the 2-week quarantine period. 3076 (95%) participants, 2825 (92%) of whom were men, were then followed up during the prospective study period after quarantine for 6 weeks. Among 189 seropositive participants, 19 (10%) had at least one positive PCR test for SARS-CoV-2 during the 6-week follow-up (1·1 cases per person-year). In contrast, 1079 (48%) of 2247 seronegative participants tested positive (6·2 cases per person-year). The incidence rate ratio was 0·18 (95% CI 0·11-0·28; p<0·001). Among seropositive recruits, infection was more likely with lower baseline full-length spike protein IgG titres than in those with higher baseline full-length spike protein IgG titres (hazard ratio 0·45 [95% CI 0·32-0·65]; p<0·001). Infected seropositive participants had viral loads that were about 10-times lower than those of infected seronegative participants (ORF1ab gene cycle threshold difference 3·95 [95% CI 1·23-6·67]; p=0·004). Among seropositive participants, baseline neutralising titres were detected in 45 (83%) of 54 uninfected and in six (32%) of 19 infected participants during the 6 weeks of observation (ID50 difference p<0·0001). INTERPRETATION: Seropositive young adults had about one-fifth the risk of subsequent infection compared with seronegative individuals. Although antibodies induced by initial infection are largely protective, they do not guarantee effective SARS-CoV-2 neutralisation activity or immunity against subsequent infection. These findings might be relevant for optimisation of mass vaccination strategies. FUNDING: Defense Health Agency and Defense Advanced Research Projects Agency.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , COVID-19/diagnosis , COVID-19 Serological Testing , Cohort Studies , Female , Humans , Male , Prospective Studies , Quarantine , Risk Assessment , Young Adult
18.
J Infect Dis ; 224(1): 70-80, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33822097

ABSTRACT

Herein we measured CD4+ T-cell responses against common cold coronaviruses (CCC) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in high-risk health care workers (HCW) and community controls. We observed higher levels of CCC-reactive T cells in SARS-CoV-2-seronegative HCW compared to community donors, consistent with potential higher occupational exposure of HCW to CCC. We further show that SARS-CoV-2 T-cell reactivity of seronegative HCW was higher than community controls and correlation between CCC and SARS-CoV-2 responses is consistent with cross-reactivity and not associated with recent in vivo activation. Surprisingly, CCC T-cell reactivity was decreased in SARS-CoV-2-infected HCW, suggesting that exposure to SARS-CoV-2 might interfere with CCC responses, either directly or indirectly. This result was unexpected, but consistently detected in independent cohorts derived from Miami and San Diego. CD4+ T-cell responses against common cold coronaviruses (CCC) are elevated in SARS-CoV-2 seronegative high-risk health care workers (HCW) compared to COVID-19 convalescent HCW, suggesting that exposure to SARS-CoV-2 might interfere with CCC responses and/or cross-reactivity associated with a protective effect.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Health Personnel , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , Adult , Antibodies, Viral , Biomarkers , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunophenotyping , Lymphocyte Activation/immunology , Male , Middle Aged , Peptides/chemistry , Peptides/immunology , Public Health Surveillance , Seroepidemiologic Studies , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocyte Subsets/metabolism
20.
NPJ Vaccines ; 6(1): 40, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33742000

ABSTRACT

Human infections with avian H7N9 subtype influenza viruses are a major public health concern and vaccines against H7N9 are urgently needed for pandemic preparedness. In early 2013, novel H7N9 influenza viruses emerged in China that caused about 1600 human cases of infection with a high associated case fatality rate. In this study, two H7N9 split virion vaccines with or without AS03 adjuvant were tested in the naive ferret model. Serological analyses demonstrated that homologous hemagglutination inhibition and microneutralization antibody titers were detectable in the ferrets after the first immunization with the AS03-adjuvanted vaccines that were further boosted by the second immunization. In addition, heterologous antibody titers against older H7 subtype viruses of the North American lineage (H7N7, H7N3) and newer H7 subtype viruses of the Eurasian lineage (H7N9) were detected in the animals receiving the AS03-adjuvanted vaccines. Animals receiving two immunizations of the AS03-adjuvanted vaccines were protected from weight loss and fever in the homologous challenge study and had no detectable virus in throat or lung samples. In addition, microscopic examination post-challenge showed animals immunized with the AS03-adjuvanted vaccines had the least signs of lung injury and inflammation, consistent with the greater relative efficacy of the adjuvanted vaccines. In conclusion, this study demonstrated that the AS03-adjuvanted H7N9 vaccines elicited high levels of homologous and heterologous antibodies and protected against H7N9 virus damage post-challenge.

SELECTION OF CITATIONS
SEARCH DETAIL