Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
PLoS Pathog ; 20(7): e1012039, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950065

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) not only caused the COVID-19 pandemic but also had a major impact on farmed mink production in several European countries. In Denmark, the entire population of farmed mink (over 15 million animals) was culled in late 2020. During the period of June to November 2020, mink on 290 farms (out of about 1100 in the country) were shown to be infected with SARS-CoV-2. Genome sequencing identified changes in the virus within the mink and it is estimated that about 4000 people in Denmark became infected with these mink virus variants. However, the routes of transmission of the virus to, and from, the mink have been unclear. Phylogenetic analysis revealed the generation of multiple clusters of the virus within the mink. Detailed analysis of changes in the virus during replication in mink and, in parallel, in the human population in Denmark, during the same time period, has been performed here. The majority of cases in mink involved variants with the Y453F substitution and the H69/V70 deletion within the Spike (S) protein; these changes emerged early in the outbreak. However, further introductions of the virus, by variants lacking these changes, from the human population into mink also occurred. Based on phylogenetic analysis of viral genome data, we estimate, using a conservative approach, that about 17 separate examples of mink to human transmission occurred in Denmark but up to 59 such events (90% credible interval: (39-77)) were identified using parsimony to count cross-species jumps on transmission trees inferred using Bayesian methods. Using the latter approach, 136 jumps (90% credible interval: (117-164)) from humans to mink were found, which may underlie the farm-to-farm spread. Thus, transmission of SARS-CoV-2 from humans to mink, mink to mink, from mink to humans and between humans were all observed.

2.
Curr Microbiol ; 81(8): 225, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877167

ABSTRACT

Linezolid resistance in Enterococcus spp. is increasingly considered critically important and a public health threat which mandates the need to understand their genomic contents and dissemination patterns. Here, we used whole-genome sequencing to characterize the resistome, virulome and mobile genetic elements of nine linezolid-resistant (LZDR) enterococci (seven optrA-E. faecalis, one poxtA-E. faecium and one optrA-E. casseliflavus) previously obtained from the nares of healthy dogs, pigs, pig farmers and tracheal samples of nestling storks in Spain. Also, the relatedness of the isolates with publicly available genomes was accessed by core-genome single nucleotide polymorphism (SNP) analysis. The optrA gene of the E. faecalis and E. casseliflavus isolates was located downstream of the fexA gene. The optrA gene in the E. casseliflavus isolate was carried in a plasmid (pURX4962), while those in the seven E. faecalis isolates were chromosomally located. The OptrA proteins were mostly variants of wild type (DP-2: Y176D/T481P; RDK: I104R/Y176D/E256K; DD-3: Y176D/G393D; and EDD: K3E/Y176D/G393D), except two that were wild type (one E. faecalis and one E. casseliflavus). The poxtA gene in the E. faecium isolate was found alone within its contig. The cfrD was upstream of ermB gene in the E. casseliflavus isolate and flanked by ISNCY and IS1216. All the LZDR enterococci carried plasmid rep genes (2-3) containing tetracycline, chloramphenicol and aminoglycoside resistance genes. All isolates except E. casseliflavus carried at least one intact prophage, of which E. faecalis-ST330 (X4957) from a pig carried the highest (n = 5). Tn6260 was associated with lnuG in E. faecalis-ST330 while Tn554 was with fexA in E. feaecalis-ST59 isolates. All except E. casseliflavus (n = 0) carried at least two metal resistance genes (MRGs), of which poxtA-carrying E. faecium-ST1739 isolate contained the most (arsA, copA, fief, ziaA, znuA, zosA, zupT, and zur). SNP-based analyses identified closely related optrA-E. faecalis isolates from a pig and a pig farmer on the same farm (SNP = 4). Moreover, optrA- carrying E. faecalis-ST32, -ST59, and -ST474 isolates from pigs were related to those previously described from humans (sick and healthy) and cattle in Spain, Belgium, and Switzerland (SNP range 43-86). These findings strongly suggest the transmission of LZDR-E. faecalis between a pig and a pig farmer and potential inter-country dissemination. These highlight the need to strengthen molecular surveillance of LZDR enterococci in all ecological niches and body parts to direct appropriate control strategies.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus , Genome, Bacterial , Linezolid , Phylogeny , Animals , Linezolid/pharmacology , Swine/microbiology , Drug Resistance, Bacterial/genetics , Dogs , Anti-Bacterial Agents/pharmacology , Enterococcus/genetics , Enterococcus/drug effects , Enterococcus/isolation & purification , Enterococcus/classification , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/transmission , Gram-Positive Bacterial Infections/veterinary , Humans , Whole Genome Sequencing , Spain , Polymorphism, Single Nucleotide , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Genomics , Plasmids/genetics
3.
Acta Derm Venereol ; 104: adv34882, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860624

ABSTRACT

Patients with atopic dermatitis (AD) are more likely than healthy individuals to harbour Staphylococcus aureus on their skin. Superantigens (SAgs) produced by specific S. aureus strains may contribute to AD-associated skin inflammation. The present study compared the prevalence and types of SAg-encoding genes between S. aureus isolated from patients with AD and from  controls, and within the AD group between isolates from different sampling sites (lesional skin, non-lesional skin, and nares). This retrospective case-control study extracted data from 2 previous studies that examined S. aureus using whole-genome sequencing. The 138 S. aureus isolates obtained from 71 AD patients contained 349 SAg-encoding genes; 22 (6.3%) were found in isolates from nares (0.4 ± 0.6 genes per isolate), 99 (28.4%) in isolates from non-lesional skin (3.7 ± 3.9), and 228 (65.3%) in isolates from lesional skin (4.2 ± 4.5). S. aureus (n = 101) from the control group contained 594 SAg-encoding genes (5.9 ± 4.2). Of the S. aureus isolated from lesional AD skin, 69% carried at least 1 gene encoding SAg compared with 33% of AD nasal isolates. SAg could be a factor in the pathogenesis of a subset of AD patients.


Subject(s)
Dermatitis, Atopic , Skin , Staphylococcus aureus , Superantigens , Humans , Dermatitis, Atopic/microbiology , Superantigens/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Retrospective Studies , Skin/microbiology , Male , Female , Case-Control Studies , Adult , Staphylococcal Skin Infections/microbiology , Middle Aged , Young Adult
4.
Heliyon ; 10(9): e29703, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694057

ABSTRACT

Wastewater sequencing has become a powerful supplement to clinical testing in monitoring SARS-CoV-2 infections in the post-COVID-19 pandemic era. While its applications in measuring the viral burden and main circulating lineages in the community have proved their efficacy, the variations in sequencing quality and coverage across the different regions of the SARS-CoV-2 genome are not well understood. Furthermore, it is unclear how different sample origins, viral extraction and concentration methods and environmental factors impact the reads sequenced from wastewater. Using high-coverage, amplicon-based, paired-end read sequencing of viral RNA extracted from wastewater collected directly from aircraft, pooled from different aircraft and airport buildings or from regular wastewater plants, we assessed the genome coverage across the sample groups with a focus on the 5'-end region covering the leader sequence and investigated whether it was possible to detect subgenomic RNA from viral material recovered from wastewater. We identified distinct patterns in the persistence of the different genomic regions across the different types of wastewaters and the existence of chimeric reads mapping to non-amplified regions. Our findings suggest that preservation of the 5'-end of the genome and the ability to detect subgenomic RNA reads, though highly susceptible to environment and sample processing conditions, may be indicative of the quality and amount of the viral RNA present in wastewater.

5.
Euro Surveill ; 29(7)2024 Feb.
Article in English | MEDLINE | ID: mdl-38362625

ABSTRACT

A surge in gonorrhoea in Denmark has occurred since 2022, a 46% increase from 2021. National surveillance, leveraging mandatory reporting and epidemiological data, highlights three distinct clades linked to heterosexual transmission. Despite the rise, these exhibit high susceptibility, contrasting MSM-associated strains. Geographical hotspots and age-specific patterns further illuminate transmission dynamics. The combination of genomic and epidemiological data provides novel insights into the evolving landscape of gonorrhoea, indicating potential shifts in infection dynamics and transmissibility.


Subject(s)
Gonorrhea , Humans , Anti-Bacterial Agents/therapeutic use , Denmark/epidemiology , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Heterosexuality , Neisseria gonorrhoeae/genetics
6.
Graefes Arch Clin Exp Ophthalmol ; 262(5): 1579-1589, 2024 May.
Article in English | MEDLINE | ID: mdl-37993692

ABSTRACT

PURPOSE: To describe the bacterial findings by a targeted sequencing approach from corneal samples of patients with microbial keratitis and factors influencing culture outcome of indirectly inoculated corneal specimen. METHODS: Prospective inclusion of patients fulfilling predefined criteria of microbial keratitis. Samples from the corneal lesion were collected and dispensed in liquid transport medium, from which both culture and targeted amplification and sequencing of the V3-V4 region of the 16S rRNA gene were carried out. Additional standard corneal culture from the corneal lesions was also performed. Factors influencing culture outcome of indirectly inoculated corneal samples were identified by a multivariate regression model incorporating quantitative data from sequencing. RESULTS: Among the 94 included patients with microbial keratitis, contact lens wear (n = 69; 73%) was the most common risk factor. Contact lens wearers displayed significant differences in the bacterial community composition of the corneal lesion compared to no lens wearers, with higher abundance of Staphylococcus spp., Corynebacterium spp., and Stenotrophomonas maltophilia. Targeted sequencing detected a potential corneal pathogen in the highest proportional abundance among 9 of the 24 (38%) culture-negative patients with microbial keratitis. Age, bacterial density in the sample, and prior antibiotic treatment significantly influenced culture outcome of indirectly inoculated corneal samples. CONCLUSION: Targeted sequencing may provide insights on pathogens in both culture negative episodes of microbial keratitis and among subgroups of patients with microbial keratitis as well as factors influencing culture outcome of indirectly inoculated corneal samples.

7.
J Glob Antimicrob Resist ; 36: 142-150, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38128728

ABSTRACT

OBJECTIVES: This study characterized the resistome, mobilome and phylogenomic relatedness of Staphylococcus aureus strains previously obtained from healthy nestling storks (HNS), pigs (HP) and pig farmers (HPF) to analyse possible transmission pathways of S. aureus with implications for the spread of antimicrobial resistance. METHODS: The genomic contents of 52 S. aureus strains obtained from the nasal cavity of HNS, HP and HPF in Spain were sequenced using the Illumina NextSeq platform to characterize their resistome, virulome and mobile genetic elements. The relatedness of strains was assessed by core-genome single nucleotide polymorphisms (SNPs). RESULTS: The frequencies of multidrug-resistance phenotype and transposons were significantly lower in strains from HNS than in those from HP and HPF (P < 0.005). However, the presence of human immune evasion cluster genes in S. aureus strains from HNS was significantly higher than in those from HP and HPF (P < 0.005). Interestingly, the frequencies of plasmids and phages were not significantly associated with the host (P > 0.05). The phylogenetic analysis identified a cluster of all the MSSA-CC398 strains carrying φSa3 and ermT on rep13 separately from the two MRSA-CC398 strains (carrying ermT on repUS18). Highly related MRSA-CC398 strains were detected in some pigs and related farmers (<10 SNPs). CONCLUSION: This study confirms high-level antibiotic selection in S. aureus in HP and HPF in comparison to HNS. Furthermore, our findings highlight the continuous transmission of MRSA-CC398 in the pig-to-human interface and MSSA-CC398 with human adaptation markers in HNS. Molecular surveillance of S. aureus using the One Health model is required to establish appropriate control strategies.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Humans , Swine , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Farms , Methicillin-Resistant Staphylococcus aureus/genetics , Host Adaptation , Phylogeny , Staphylococcal Infections/veterinary , Staphylococcal Infections/epidemiology , Birds , Genomics
8.
Front Microbiol ; 14: 1307261, 2023.
Article in English | MEDLINE | ID: mdl-38075872

ABSTRACT

Introduction: This study aimed to investigate the epidemiology, serotype distribution, phenotypical antibiogram, and molecular resistance gene characteristics of invasive Haemophilus influenzae infections in Denmark from 2014 to 2022. Additionally, the potential impact of outdoor temperature and COVID-19 restrictions on the epidemiology of H. influenzae was assessed. Materials and methods: Invasive H. influenzae isolates were received from patients with positive culture results from cerebrospinal fluid, blood, or other sterile sites. Sample data were obtained from the Danish laboratory surveillance system/MiBa database, and whole-genome sequencing (WGS) was performed on the isolates. The incidence rates and distribution of H. influenzae cases were analyzed, and antibiotic susceptibility were assessed. Results: A total of 1,007 invasive H. influenzae cases were identified, with serotyping conducted for 752 (74.7%) isolates. The median incidence per year of H. influenzae was 2.0 cases per 100,000, with the highest incidence in 2014 and the lowest in 2020. The majority of H. influenzae isolates were non-typeable H. influenzae (NTHi), while the most prominent serotypes were serotype f followed by serotype b. Bacteremia cases accounted for the majority (88.6%) of occurrences, although meningitis cases showed an increasing trend during the time period. The age group 85+ exhibited the highest incidence. The implementation of COVID-19 preventive interventions in 2020 resulted in a significant reduction in H. influenzae incidence, which returned to pre-COVID levels in 2021. A negative correlation was observed between monthly H. influenzae cases and outdoor temperature. An overall level of genetic beta-lactamase resistance of 26.3% was observed divided into 10.6% beta-lactamase-positive ampicillin-resistant (gBLPAR), 13.6% beta-lactamase-negative ampicillin-resistant (gBLNAR) and 2.1% beta-lactamase-positive amoxicillin clavulanate-resistant (gBLPACR). Other non-beta-lactam resistance traits were detected in 7.6% of isolates (primarily aminoglycoside-modifying enzymes). Conclusion: The overall incidence of H. influenzae in Denmark returned to stable levels after the COVID-19 epidemic, with NTHi strains dominating. The COVID-19 preventive interventions led to a major reduction in incidence. A significant negative correlation between the incidence of H. influenzae and temperature was observed. The study revealed an overall genetic beta-lactam resistance rate of 26.3%, and the concordance between genotypic and phenotypic beta-lactam resistance was high (98.2%).

9.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37966467

ABSTRACT

Seal finger (sealer's finger, spekk finger), an extremely painful hand infection contracted by individuals handling seals, has previously been associated with Mycoplasma phocacerebrale. From 2000 to 2014, six independent strains of a novel Mycoplasma species were isolated at Statens Serum Institut, Denmark, from Scandinavian patients with seal finger (M5725T, M6447, M6620, M6642 and M6879) or septic arthritis (M6921). Prior to the onset of infection, all patients had reported contact with unspeciated seals. All isolates grew within 2-5 days in Friis' modified broth and metabolized glucose and arginine but not urea. Strains M5725T, M6447, M6642 and M6921 also grew in Hayflick-type media. Colonies on agar media were large (0.5-1.0 mm) and had a typical 'fried egg' appearance, reduced tetrazolium, and were digitonin sensitive. Growth occurred at 32 °C but not at 42 °C. Strains were susceptible to doxycycline and moxifloxacin but resistant to azithromycin and erythromycin. The genomes of the six strains were sequenced and relatedness to all known Mycoplasma species was inferred. Phylogenetic analyses using 16S rRNA gene sequences and core genome single nucleotide polymorphisms showed that the isolated strains were highly similar and phylogenetically distinct from all other species within the genus Mycoplasma. The sizes of the genome sequences of the strains ranged from 744 321 to 772409 bp, with a G+C content of 25.0-25.2 mol%. Based on these analyses, we propose a novel species of the genus Mycoplasma with the name Mycoplasma phocimorsus sp. nov. with the first isolate M5725T (NCTC 14922T=DSM 116188T) as the proposed type strain and representative strains M6447, M6620, M6642, M6879 and M6921.


Subject(s)
Arthritis, Infectious , Seals, Earless , Humans , Animals , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Cellulitis
10.
Infect Genet Evol ; 116: 105529, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38013047

ABSTRACT

This study determined the nasal staphylococci diversity and characterized their resistome, with a focus on the mobilome of methicillin-susceptible Staphylococcus aureus (MSSA)-CC398 subclade from healthy adults in La Rioja (northern Spain). Nasal staphylococci recovered from 57 healthy individuals (HI) were identified (MALDI-TOF-MS) and their antimicrobial resistance, virulence determinants and genetic lineages were studied. The relatedness of MSSA-CC398 isolates was assessed by core-genome single-nucleotide-polymorphisms (SNPs). One-hundred-forty-three non-repetitive staphylococci were obtained from most HI (98.2%), of which S. epidermidis (87.7%) and S. aureus (36.8%) were the predominant species. About 15% of the 27 S. aureus and 30.1% of the 116 coagulase-negative staphylococci (CoNS) isolates presented a multidrug resistance (MDR) phenotype. All S. aureus isolates were MSSA but 30.2% of CoNS isolates were mecA-positive and carried SCCmec types III, IV, and V. The highest non-beta-lactam resistance (frequency/genes) in S. aureus and CoNS were: erythromycin-clindamycin-inducible (25.9%/ermT, ermC) and mupirocin (30.1%/mupA), respectively. About 85% of S. aureus isolates carried relevant virulence genes. Eight clonal complexes (CCs) of MSSA were identified, of which CC398 was the predominant (33.3%). About 78% of the CC398 isolates harboured rep13-bound ermT gene, however, one carried a rep10-bound ermC gene. Only the ermT-positive MSSA-CC398 isolates were closely related (<50 SNPs) and carried the φSa3. Diverse MDR-S. epidermidis isolates were identified which included the lineages ST59 and ST210. The high rate of toxigenic S. aureus and of MSSA-CC398 subclade highlight the ability of HI to carry and transmit virulent isolates. Moreover, the high frequency of MDR-CoNS, often linked with SCCmec, needs to be monitored for their potential human health implications.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Adult , Humans , Staphylococcus aureus/genetics , Staphylococcus/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Spain/epidemiology , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/epidemiology , Microbial Sensitivity Tests
12.
Microb Genom ; 9(10)2023 10.
Article in English | MEDLINE | ID: mdl-37874326

ABSTRACT

Neisseria meningitidis can be a human commensal in the upper respiratory tract but is also capable of causing invasive diseases such as meningococcal meningitis and septicaemia. No specific genetic markers have been detected to distinguish carriage from disease isolates. The aim here was to find genetic traits that could be linked to phenotypic outcomes associated with carriage versus invasive N. meningitidis disease through a bacterial genome-wide association study (GWAS). In this study, invasive N. meningitidis isolates collected in Sweden (n=103) and carriage isolates collected at Örebro University, Sweden (n=213) 2018-2019 were analysed. The GWAS analysis, treeWAS, was applied to single-nucleotide polymorphisms (SNPs), genes and k-mers. One gene and one non-synonymous SNP were associated with invasive disease and seven genes and one non-synonymous SNP were associated with carriage isolates. The gene associated with invasive disease encodes a phage transposase (NEIS1048), and the associated invasive SNP glmU S373C encodes the enzyme N-acetylglucosamine 1-phosphate (GlcNAC 1-P) uridyltransferase. Of the genes associated with carriage isolates, a gene variant of porB encoding PorB class 3, the genes pilE/pilS and tspB have known functions. The SNP associated with carriage was fkbp D33N, encoding a FK506-binding protein (FKBP). K-mers from PilS, tbpB and tspB were found to be associated with carriage, while k-mers from mtrD and tbpA were associated with invasiveness. In the genes fkbp, glmU, PilC and pilE, k-mers were found that were associated with both carriage and invasive isolates, indicating that specific variations within these genes could play a role in invasiveness. The data presented here highlight genetic traits that are significantly associated with invasive or carriage N. meningitidis across the species population. These traits could prove essential to our understanding of the pathogenicity of N. meningitidis and could help to identify future vaccine targets.


Subject(s)
Bacteriophages , Meningitis, Meningococcal , Neisseria meningitidis , Humans , Neisseria meningitidis/genetics , Genome-Wide Association Study , Tacrolimus Binding Proteins
13.
J Antimicrob Chemother ; 78(12): 2878-2885, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37864344

ABSTRACT

BACKGROUND: Food animal AMR surveillance programs assess only small numbers of Escherichia coli (from 100 to 600 per animal class) nationally each year, severely limiting the evaluation of public health risk(s). Here we demonstrate an affordable approach for early detection of emerging resistance on a broad scale that can also accurately characterize spatial and temporal changes in resistance. METHODS: Caecal samples (n = 295) obtained from 10 meat poultry were screened using high-throughput robotics. Initial screening via agar dilution (5310 plates) quantified AMR carriage (cfu/g) for each sample. Ciprofloxacin-resistant isolates (n = 91) proceeded to downstream broth microdilution susceptibility testing. A subset of 28 ciprofloxacin-resistant isolates underwent WGS and phylogenetic analysis. RESULTS: Intra- and inter-flock carriage of resistance varied with drug class. Ampicillin and tetracycline resistance was ubiquitous to most birds in all flocks with an average carriage rate of 5.8 log10 cfu/g. Gentamicin and ciprofloxacin-resistant E. coli colonized fewer birds, and had an average carriage rate of 1.2 log10 cfu/g and 1.0 log10 cfu/g of faeces, respectively. Resistance to extended-spectrum cephalosporins was absent. ST354 was the dominant ST among the WGS isolates, but they demonstrated markedly lower resistance gene carriage than their international counterparts. CONCLUSIONS: These data amply demonstrate the ineffectiveness of commonly relied-on approaches to AMR surveillance for achieving early detection of emergence, or for measuring spatial and temporal resistance trends. Genetic analysis suggested there has been transnational flow of a ciprofloxacin-resistant strain into Australian poultry flocks, explaining their detection in a nation that prohibits fluoroquinolone use in poultry.


Subject(s)
Escherichia coli Infections , Poultry , Animals , Anti-Bacterial Agents/pharmacology , Australia , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial , Escherichia coli , Escherichia coli Infections/epidemiology , Fluoroquinolones/pharmacology , Phylogeny
14.
Microbiol Resour Announc ; 12(11): e0064823, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37847065

ABSTRACT

Bartonella henselae is a primary zoonotic agent, having cats as asymptomatic reservoirs. In humans, it causes cat scratch disease. Here, we report the whole genome sequences of 16 strains isolated from cats in Valdivia city, Southern Chile. Strains showed little variability in the multilocus sequence typing profiles.

15.
Euro Surveill ; 28(36)2023 09.
Article in English | MEDLINE | ID: mdl-37676147

ABSTRACT

We describe 10 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant BA.2.86 detected in Denmark, including molecular characteristics and results from wastewater surveillance that indicate that the variant is circulating in the country at a low level. This new variant with many spike gene mutations was classified as a variant under monitoring by the World Health Organization on 17 August 2023. Further global monitoring of COVID-19, BA.2.86 and other SARS-CoV-2 variants is highly warranted.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring , Denmark/epidemiology
16.
BMJ Open ; 13(8): e071487, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604637

ABSTRACT

INTRODUCTION: A feared complication after total hip arthroplasty (THA) is prosthetic joint infection (PJI), associated with high morbidity and mortality. Prophylactic antibiotics can reduce the risk of PJI. However, there is no consensus on the dosages and current recommendations are based on a low evidence level. The objective is to compare the effect of a single versus multiple doses of prophylactic antibiotics administered within 24 hours on PJI. METHODS AND ANALYSIS: The study is designed as a cross-over, cluster randomised, non-inferiority trial. All clinical centres use both antibiotic practices (1 year of each intervention). All Danish orthopaedic surgery departments will be involved: Based on quality databases, 2-year cohorts of approximately 20 000 primary THAs conducted at 39 public and private hospitals, will be included. INCLUSION CRITERIA: age ≥18 years, all indications for THA except patients operated due to acute or sequelae from proximal femoral or pelvic fractures or bone tumour or metastasis. The primary outcome is PJI within 90 days after primary THA. Secondary outcomes include (1) serious adverse events, (2) potential PJI, (3) length of hospitalisation stay, (4) cardiovascular events, (5) hospital-treated infections, (6) community-based antibiotic use, (7) opioid use and (8) use of acetaminophen and non-steroidal anti-inflammatory drugs. All outcome measures will be extracted from national databases. Analyses will be based on the intention-to-treat population. Non-inferiority will be shown if the upper limit of the two-sided 95% CI for the OR is less than 1.32 for the single dose as compared with multiple doses. The results will establish best practice on antibiotic prophylaxis dosages in the future. ETHICS AND DISSEMINATION: This study has been approved by Committees on Health Research Ethics for The Capital Region of Denmark (21069108) and The Danish Medicines Agency (2021091723). All results will be presented in peer-reviewed medical journals and international conferences. TRIAL REGISTRATION NUMBER: NCT05530551.


Subject(s)
Arthroplasty, Replacement, Hip , Cross Infection , Osteoarthritis , Humans , Adolescent , Arthroplasty, Replacement, Hip/adverse effects , Hospitals, Private , Anti-Bacterial Agents/therapeutic use , Denmark , Randomized Controlled Trials as Topic
17.
Antibiotics (Basel) ; 12(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37627686

ABSTRACT

Staphylococcus pseudintermedius is an opportunistic pathogen that is frequently isolated from canines. It is of escalating interest because of its increasing antimicrobial resistance and zoonotic potential. Although many published articles are available that describe isolates obtained from diseased dogs and humans, this study focused on isolates obtained from healthy dogs and their owners who presented at clinics for routine veterinary care and utilized whole genome sequencing-based analyses for strain comparisons. A total of 25 humans and 27 canines were sampled at multiple sites, yielding 47 and 45 isolates, respectively. Whole genome sequence analysis was performed. We detected mostly new sequence types (STs) and a high diversity. Strains carried few antimicrobial resistance genes and plasmids, albeit three MRSP strains were found that belonged to two internationally distributed STs. The virulence content did not provide insights toward a tendency to colonization of humans but supported that there may be differences in the surface proteins between carrier strains and those causing pyoderma. We identified 13 cases in which humans were infected with strains from the dog they owned.

18.
Euro Surveill ; 28(26)2023 06.
Article in English | MEDLINE | ID: mdl-37382884

ABSTRACT

A highly virulent sub-lineage of the Streptococcus pyogenes M1 clone has been rapidly expanding throughout Denmark since late 2022 and now accounts for 30% of the new invasive group A streptococcal infections. We aimed to investigate whether a shift in variant composition can account for the high incidence rates observed over winter 2022/23, or if these are better explained by the impact of COVID-19-related restrictions on population immunity and carriage of group A Streptococcus.


Subject(s)
COVID-19 , Streptococcal Infections , Humans , Streptococcus pyogenes/genetics , Seasons , Streptococcal Infections/epidemiology , Denmark/epidemiology
19.
EBioMedicine ; 93: 104669, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37348163

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly spread worldwide in the population since it was first detected in late 2019. The transcription and replication of coronaviruses, although not fully understood, is characterised by the production of genomic length RNA and shorter subgenomic RNAs to make viral proteins and ultimately progeny virions. Observed levels of subgenomic RNAs differ between sub-lineages and open reading frames but their biological significance is presently unclear. METHODS: Using a large and diverse panel of virus sequencing data produced as part of the Danish COVID-19 routine surveillance together with information in electronic health registries, we assessed the association of subgenomic RNA levels with demographic and clinical variables of the infected individuals. FINDINGS: Our findings suggest no significant statistical relationship between levels of subgenomic RNAs and host-related factors. INTERPRETATION: Differences between lineages and subgenomic ORFs may be related to differences in target cell tropism, early virus replication/transcription kinetics or sequence features. FUNDING: The author(s) received no specific funding for this work.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Subgenomic RNA , Genomics , Denmark/epidemiology
20.
One Health ; 16: 100518, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37363239

ABSTRACT

A one-health perspective may provide new and actionable information about Escherichia coli transmission. E. coli colonizes a broad range of vertebrates, including humans and food-production animals, and is a leading cause of bladder, kidney, and bloodstream infections in humans. Substantial evidence supports foodborne transmission of pathogenic E. coli strains from food animals to humans. However, the relative contribution of foodborne zoonotic E. coli (FZEC) to the human extraintestinal disease burden and the distinguishing characteristics of such strains remain undefined. Using a comparative genomic analysis of a large collection of contemporaneous, geographically-matched clinical and meat-source E. coli isolates (n = 3111), we identified 17 source-associated mobile genetic elements - predominantly plasmids and bacteriophages - and integrated them into a novel Bayesian latent class model to predict the origins of clinical E. coli isolates. We estimated that approximately 8 % of human extraintestinal E. coli infections (mostly urinary tract infections) in our study population were caused by FZEC. FZEC strains were equally likely to cause symptomatic disease as non-FZEC strains. Two FZEC lineages, ST131-H22 and ST58, appeared to have particularly high virulence potential. Our findings imply that FZEC strains collectively cause more urinary tract infections than does any single non-E. coli uropathogenic species (e.g., Klebsiella pneumoniae). Our novel approach can be applied in other settings to identify the highest-risk FZEC strains, determine their sources, and inform new one-health strategies to decrease the heavy public health burden imposed by extraintestinal E. coli infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...