Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 64(5): 704-710, 2023 05.
Article in English | MEDLINE | ID: mdl-36460344

ABSTRACT

Our aim was to report the use of 64Cu and 67Cu as a theranostic pair of radionuclides in human subjects. An additional aim was to measure whole-organ dosimetry of 64Cu and 67Cu attached to the somatostatin analog octreotate using the sarcophagine MeCOSar chelator (SARTATE) in subjects with somatostatin receptor-expressing lesions confined to the cranium, thereby permitting normal-organ dosimetry for the remainder of the body. Methods: Pretreatment PET imaging studies were performed up to 24 h after injection of [64Cu]Cu-SARTATE, and normal-organ dosimetry was estimated using OLINDA/EXM. Subsequently, the trial subjects with multifocal meningiomas were given therapeutic doses of [67Cu]Cu-SARTATE and imaged over several days using SPECT/CT. Results: Five subjects were initially recruited and imaged using PET/CT before treatment. Three of the subjects were subsequently administered 4 cycles each of [67Cu]Cu-SARTATE followed by multiple SPECT/CT imaging time points. No serious adverse events were observed, and no adverse events led to withdrawal from the study or discontinuation from treatment. The estimated mean effective dose was 3.95 × 10-2 mSv/MBq for [64Cu]Cu-SARTATE and 7.62 × 10-2 mSv/MBq for [67Cu]Cu-SARTATE. The highest estimated organ dose was in spleen, followed by kidneys, liver, adrenals, and small intestine. The matched pairing was shown by PET and SPECT intrasubject imaging to have nearly identical targeting to tumors for guiding therapy, demonstrating a potentially accurate and precise theranostic product. Conclusion: 64Cu and 67Cu show great promise as a theranostic pair of radionuclides. Further clinical studies will be required to examine the therapeutic dose required for [67Cu]Cu-SARTATE for various indications. In addition, the ability to use predictive 64Cu-based dosimetry for treatment planning with 67Cu should be further explored.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/diagnostic imaging , Meningioma/radiotherapy , Positron Emission Tomography Computed Tomography/methods , Radioisotopes , Radiometry , Radiopharmaceuticals/therapeutic use , Tissue Distribution
2.
Appl Radiat Isot ; 178: 109934, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34598038

ABSTRACT

Scandium-47 (47Sc) is of high value for targeted radiotherapy and theranostics; we report a novel, cost-effective approach to produce high-purity 47Sc via photonuclear reactions with natural vanadium. Irradiation at 20 MeV photon end-point energy produces >99.998% pure 47Sc, while irradiation at 38 MeV produces 98.8 ± 1.6% pure 47Sc. Experimental data suggest producing greater than 100 mCi (3700 MBq) of 47Sc using this approach may be feasible. Future research into refinement and scale-up to support pre-clinical research is recommended.

3.
Proc Natl Acad Sci U S A ; 117(45): 28316-28327, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33106429

ABSTRACT

Over the past decade, theranostic imaging has emerged as a powerful clinical tool in oncology for identifying patients likely to respond to targeted therapies and for monitoring the response of patients to treatment. Herein, we report a theranostic approach to pretargeted radioimmunotherapy (PRIT) based on a pair of radioisotopes of copper: positron-emitting copper-64 (64Cu, t1/2 = 12.7 h) and beta particle-emitting copper-67 (67Cu, t1/2 = 61.8 h). This strategy is predicated on the in vivo ligation between a trans-cyclooctene (TCO)-bearing antibody and a tetrazine (Tz)-based radioligand via the rapid and bioorthogonal inverse electron-demand Diels-Alder reaction. Longitudinal therapy studies were conducted in a murine model of human colorectal carcinoma using an immunoconjugate of the huA33 antibody modified with TCO (huA33-TCO) and a 67Cu-labeled Tz radioligand ([67Cu]Cu-MeCOSar-Tz). The injection of huA33-TCO followed 72 h later by the administration of 18.5, 37.0, or 55.5 MBq of [67Cu]Cu-MeCOSar-Tz produced a dose-dependent therapeutic response, with the median survival time increasing from 68 d for the lowest dose to >200 d for the highest. Furthermore, we observed that mice that received the highest dose of [67Cu]Cu-MeCOSar-Tz in a fractionated manner exhibited improved hematological values without sacrificing therapeutic efficacy. Dual radionuclide experiments in which a single administration of huA33-TCO was followed by separate injections of [64Cu]Cu-MeCOSar-Tz and [67Cu]Cu-MeCOSar-Tz revealed that the positron emission tomography images produced by the former accurately predicted the efficacy of the latter. In these experiments, a correlation was observed between the tumoral uptake of [64Cu]Cu-MeCOSar-Tz and the subsequent therapeutic response to [67Cu]Cu-MeCOSar-Tz.


Subject(s)
Copper Radioisotopes/pharmacology , Copper Radioisotopes/therapeutic use , Precision Medicine/methods , Radioimmunotherapy/methods , Animals , Antibodies , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Cycloaddition Reaction , Dose-Response Relationship, Drug , Female , Humans , Immunoconjugates , Mice , Mice, Nude , Positron-Emission Tomography/methods , Radioisotopes/pharmacology , Radioisotopes/therapeutic use , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL