Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Nat Commun ; 15(1): 5043, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871722

ABSTRACT

Microwave impedance microscopy (MIM) is an emerging scanning probe technique for nanoscale complex permittivity mapping and has made significant impacts in diverse fields. To date, the most significant hurdles that limit its widespread use are the requirements of specialized microwave probes and high-precision cancellation circuits. Here, we show that forgoing both elements not only is feasible but also enhances performance. Using monolithic silicon cantilever probes and a cancellation-free architecture, we demonstrate Johnson-noise-limited, drift-free MIM operation with 15 nm spatial resolution, minimal topography crosstalk, and an unprecedented sensitivity of 0.26 zF/√Hz. We accomplish this by taking advantage of the high mechanical resonant frequency and spatial resolution of silicon probes, the inherent common-mode phase noise rejection of self-referenced homodyne detection, and the exceptional stability of the streamlined architecture. Our approach makes MIM drastically more accessible and paves the way for advanced operation modes as well as integration with complementary techniques.

2.
Int J Pharm ; 660: 124344, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885779

ABSTRACT

The enhancement of conventional liposome and lipid nanoparticle (LNP) methodologies in the formulation and deployment of messenger RNA (mRNA) vaccines necessitates further refinement to augment both their effectiveness and biosafety profiles. Additionally, researching these innovative delivery carrier materials represents both a prominent focus and a significant challenge in the current scientific landscape. Here we designed new chiral self-assembling peptides as the delivery carrier for RNA vaccines to study the underlying mechanisms in the feline infectious peritonitis virus (FIPV) model system. Firstly, we successfully transcribed mature enhanced green fluorescent protein (EGFP) mRNA and feline infectious peritonitis virus nucleocapsid (FIPV N) mRNA in vitro from optimized vectors. Subsequently, we developed chiral self-assembling peptide-1 (CSP-1) and chiral self-assembling peptide-2 (CSP-2) peptides, taking into account the physical and chemical characteristics of nucleic acid molecules as well as the principles of self-assembling peptides, with the aim of improving the delivery efficiency of mRNA molecule complexes. We determined the optimal coating ratio between CSP and mRNA by electrophoretic mobility shift assay. We found that the peptides and mRNA complexes can protect the mRNA from RNase A enzyme and efficiently deliver mRNA into cells for target antigen proteins expression. Animal experiments confirmed that CSP-1/mRNA complex can effectively trigger immune response mechanisms involving IFN-γ and T cell activation. It can also stimulate CD4+ and CD8+ T cell proliferation and induce serum antibody titers up to 10,000 times higher. And no pathological changes were observed by immunohistochemistry in liver, spleen, and kidney, indicating that CSP-1 may be a safe and promising delivery system for mRNA vaccines. Methodologically, this research represents a novel endeavor in the utilization of chiral self-assembling peptides within the realm of mRNA vaccines. This approach not only introduces fresh prospects for employing such nanomaterials in various mRNA vaccines but also expands the potential for developing small molecules, proteins, and antibodies. Furthermore, it paves the way for new clinical applications of existing pharmaceuticals.

3.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731435

ABSTRACT

Self-assembled peptide-based nanobiomaterials exhibit promising prospects for drug delivery applications owing to their commendable biocompatibility and biodegradability, facile tissue uptake and utilization, and minimal or negligible unexpected toxicity. TFF3 is an active peptide autonomously secreted by gastric mucosal cells, possessing multiple biological functions. It acts on the surface of the gastric mucosa, facilitating the repair process of gastric mucosal damage. However, when used as a drug, TFF3 faces significant challenges, including short retention time in the gastric mucosal cavity and deactivation due to degradation by stomach acid. In response to this challenge, we developed a self-assembled short peptide hydrogel, Rqdl10, designed as a delivery vehicle for TFF3. Our investigation encompasses an assessment of its properties, biocompatibility, controlled release of TFF3, and the mechanism underlying the promotion of gastric mucosal injury repair. Congo red/aniline blue staining revealed that Rqdl10 promptly self-assembled in PBS, forming hydrogels. Circular dichroism spectra indicated the presence of a stable ß-sheet secondary structure in the Rqdl10 hydrogel. Cryo-scanning electron microscopy and atomic force microscopy observations demonstrated that the Rqdl10 formed vesicle-like structures in the PBS, which were interconnected to construct a three-dimensional nanostructure. Moreover, the Rqdl10 hydrogel exhibited outstanding biocompatibility and could sustainably and slowly release TFF3. The utilization of the Rqdl10 hydrogel as a carrier for TFF3 substantially augmented its proliferative and migratory capabilities, while concurrently bolstering its anti-inflammatory and anti-apoptotic attributes following gastric mucosal injury. Our findings underscore the immense potential of the self-assembled peptide hydrogel Rqdl10 for biomedical applications, promising significant contributions to healthcare science.


Subject(s)
Gastric Mucosa , Hydrogels , Peptides , Trefoil Factor-3 , Hydrogels/chemistry , Trefoil Factor-3/chemistry , Trefoil Factor-3/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/injuries , Peptides/chemistry , Peptides/pharmacology , Animals , Humans , Drug Delivery Systems , Mice , Wound Healing/drug effects
4.
Adv Sci (Weinh) ; 11(17): e2302988, 2024 May.
Article in English | MEDLINE | ID: mdl-38430538

ABSTRACT

Peripheral nerve injury (PNI) remains a challenging area in regenerative medicine. Nerve guide conduit (NGC) transplantation is a common treatment for PNI, but the prognosis of NGC treatment is unsatisfactory due to 1) neuromechanical unmatching and 2) the intra-conduit inflammatory microenvironment (IME) resulting from Schwann cell pyroptosis and inflammatory-polarized macrophages. A neuromechanically matched NGC composed of regenerated silk fibroin (RSF) loaded with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (P:P) and dimethyl fumarate (DMF) are designed, which exhibits a matched elastic modulus (25.1 ± 3.5 MPa) for the peripheral nerve and the highest 80% elongation at break, better than most protein-based conduits. Moreover, the NGC can gradually regulate the intra-conduit IME by releasing DMF and monitoring sciatic nerve movements via piezoresistive sensing. The combination of NGC and electrical stimulation modulates the IME to support PNI regeneration by synergistically inhibiting Schwann cell pyroptosis and reducing inflammatory factor release, shifting macrophage polarization from the inflammatory M1 phenotype to the tissue regenerative M2 phenotype and resulting in functional recovery of neurons. In a rat sciatic nerve crush model, NGC promoted remyelination and functional and structural regeneration. Generally, the DMF/RSF/P:P conduit provides a new potential therapeutic approach to promote nerve repair in future clinical treatments.


Subject(s)
Fibroins , Nerve Regeneration , Peripheral Nerve Injuries , Animals , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Rats , Peripheral Nerve Injuries/therapy , Fibroins/chemistry , Fibroins/pharmacology , Disease Models, Animal , Rats, Sprague-Dawley , Schwann Cells/metabolism , Guided Tissue Regeneration/methods , Inflammation , Tissue Scaffolds/chemistry , Sciatic Nerve/injuries
5.
World J Surg Oncol ; 22(1): 79, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486308

ABSTRACT

BACKGROUND: For women diagnosed with HR-HPV DNA positivity in community hospitals, the necessity of investigating the potential presence of multiple HR-HPV infections upon referral to tertiary medical institutions remains unclear. METHODS: In our cohort, women tested positive for HR-HPV DNA during examinations in community hospitals, were subsequently referred to tertiary medical facilities, reevaluated HR-HPV genotype and categorized based on cytological and histopathological results. The risk of cytologic/histopathology abnormalities and ≧ high grade squamous intraepithelial lesion(HSIL) or Cervical Intraepithelial Neoplasia (CIN) 2 associated with individual genotypes and related multiple HPV infections are calculated. RESULTS: A total of 1677 women aged between 21 and 77 were finally included in the present study. The cytology group included 1202 women and the histopathological group included 475 women with at least one HR-HPV infection of any genotype. We only observed a higher risk of low grade cytological abnormalities in women with multiple infections than those in corresponding single infections (for all population with an OR of 1.85[1.39-2.46]; p < 0.05). However, this phenomenon was not observed in histopathology abnormalities (CIN1). The risk of developing of ≥ HSIL/CIN2 in women who were infected with multiple HR-HPV also showed a similar profile to those with a single HR-HPV genotype. CONCLUSION: Multiple HR-HPV infections is only associated with a higher associated risk of low grade cytological abnormalities. There is no evidence of clinical benefit to identify the possible presence of multiple HR-HPV infection frequently in a short period of time for women with HR-HPV-DNA positive.


Subject(s)
Carcinoma in Situ , Carcinoma, Squamous Cell , Papillomavirus Infections , Humans , Female , Young Adult , Adult , Middle Aged , Aged , Cervix Uteri , Papillomavirus Infections/complications , DNA
6.
Food Chem ; 446: 138777, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38402763

ABSTRACT

Seven novel antioxidant peptides (AWF, LWQ, WIY, YLW, LAYW, LPWG, and LYFY) exhibiting a superior activity compared to trolox were identified through in silico screening. Among these, the four peptides (WIY, YLW, LAYW, and LYFY) displayed notably enhanced performance, with ABTS activity 2.58-3.26 times and ORAC activity 5.19-8.63 times higher than trolox. Quantum chemical calculations revealed that the phenolic hydroxyl group in tyrosine and the nitrogen-hydrogen bond in the indole ring of tryptophan serve as the critical sites for antioxidant activity. These findings likely account for the potent chemical antioxidant activity. The corn peptides also exerted a protective effect against AAPH-induced cytomorphologic changes in human erythrocytes by modulating the antioxidant system. Notably, LAYW exhibited the most pronounced cytoprotective effects, potentially due to its high content of hydrophobic amino acids.


Subject(s)
Antioxidants , Glutens , Humans , Antioxidants/chemistry , Glutens/chemistry , Zea mays/chemistry , Peptides/chemistry , Phenols
7.
Biochem Biophys Res Commun ; 704: 149701, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38408415

ABSTRACT

Human bronchial epithelial cells in the airway system, as the primary barrier between humans and the surrounding environment, assume a crucial function in orchestrating the processes of airway inflammation. Target to develop a new three-dimensional (3D) inflammatory model to airway system, and here we report a strategy by using self-assembling D-form peptide to cover the process. By testing physicochemical properties and biocompatibility of Sciobio-Ⅲ, we confirmed that it can rapidly self-assembles under the trigger of ions to form a 3D nanonetwork-like scaffold, which supports 3D cell culture including the cell strains like BEAS-2B cells. Subsequently, inflammation model was established by lipopolysaccharide (LPS), the expression of some markers of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interleukin-8 (IL-8), the levels of relevant inflammatory factors were measured by RT-qPCR and the secretion profile of inflammatory cytokines by ELISA, are obtained the quite difference effects in 2D and 3D microenvironment, which suggested Sciobio-Ⅲ hydrogel is an ideal scaffold that create the microenvironment for 3D cell culture. Here we are success to establish a 3D inflammation model for airway system. This innovative model allows for rapid and accurate evaluation of drug metabolism and toxicological side effects, hope to use in drug screening for airway inflammatory diseases and beyond.


Subject(s)
Bronchi , Inflammation , Humans , Inflammation/metabolism , Cells, Cultured , Interleukin-1beta/metabolism , Epithelial Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Biomacromolecules ; 25(3): 1408-1428, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38236703

ABSTRACT

The efficacy of the dendritic cell (DC) has failed to meet expectations thus far, and crucial problems such as the immature state of DCs, low targeting efficiency, insufficient number of dendritic cells, and microenvironment are still the current focus. To address these problems, we developed two self-assembling peptides, RLDI and RQDT, that mimic extracellular matrix (ECM). These peptides can be self-assembled into highly ordered three-dimensional nanofiber scaffold structures, where RLDI can form gelation immediately. In addition, we found that RLDI and RQDT enhance the biological function of DCs, including releasing antigens sustainably, adhering to DCs, promoting the maturation of DCs, and increasing the ability of DC antigen presentation. Moreover, peptide hydrogel-based DC treatment significantly achieved prophylactic and treatment effects on colon cancer. These results have certain implications for the design of new broad-spectrum vaccines in the future.


Subject(s)
Dendritic Cells , Hydrogels , Hydrogels/pharmacology , Immunity, Cellular , Peptides/pharmacology , Peptides/chemistry , T-Lymphocytes
9.
J Med Chem ; 67(1): 180-198, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38117235

ABSTRACT

In this study, we aimed to discover novel GLP-1 analogues from natural sources. We investigated GLP-1 analogues from fish and amphibians, and bullfrog GLP-1 (bGLP-1) showed the highest potency. Starting with bGLP-1, we explored the structure-activity relationship and performed optimization and long-acting modifications, resulting in a potent analogue called 2f. Notably, 2f exhibited superior effects on food intake, glycemic control, and body weight compared to semaglutide. Furthermore, we explored the usefulness of bGLP-1 in designing GLP-1-based multiagonists. Using the bGLP-1 sequence, we designed novel dual GLP-1/glucagon receptor agonists and triple GLP-1/GIP/glucagon receptor agonists. The selected dual GLP-1/glucagon receptor agonist 3o and triple GLP-1/GIP/glucagon receptor agonist 4b exhibited significant therapeutic effects on lipid regulation, glycemic control, and body weight. Overall, our study highlights the potential of discovering potent GLP-1 receptor agonists from natural sources. Additionally, utilizing natural GLP-1 analogues for designing multiagonists presents a practical approach for developing antiobesity and antidiabetic agents.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Animals , Glucagon-Like Peptide 1/agonists , Rana catesbeiana , Receptors, Glucagon , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Body Weight , Glucagon-Like Peptide-1 Receptor/agonists , Diabetes Mellitus, Type 2/drug therapy
10.
Behav Sci (Basel) ; 13(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37998655

ABSTRACT

Work withdrawal behavior is a type of negative reaction when employees face obstacles at work. Its negative impact on individuals and organizations has caught the attention of academic circles and managers. In this study, data from 596 full-time employees were collected using two timepoint measurements one month apart. The internal mechanism of the link between obstructive stress and job withdrawal behavior was analyzed, and the combined effects of work control and cognitive flexibility on the negative effects of obstructive stress were analyzed in terms of the work demand-control-personal model. The results showed that negative work rumination played a complete mediating role between obstructive stress and work withdrawal behavior, and cognitive flexibility, obstructive stress, and work control had a significant three-way interaction. The results suggest that more attention should be paid to the role of employee cognition to avoid employees' withdrawal behavior in the face of work obstacles. In addition, when providing work resources to employees, the organization should also consider ensuring that work resources can be fully utilized to play a positive role in buffering work obstacles.

11.
J Am Chem Soc ; 145(41): 22609-22619, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37803879

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI) is often accompanied by upregulation of homocysteine (Hcy). Excessive Hcy damages cerebral vascular endothelial cells and neurons, inducing neurotoxicity and even neurodegeneration. Normally, supplementation of vitamin B12 is an ideal intervention to reduce Hcy. However, vitamin B12 therapy is clinically inefficacious for CIRI. Considering oxidative stress is closely related to CIRI, the lysosome is the pivotal site for vitamin B12 transport. Lysosomal oxidative stress might hinder the transport of vitamin B12. Whether lysosomal malondialdehyde (lysosomal MDA), as the authoritative biomarker of lysosomal oxidative stress, interferes with the transport of vitamin B12 has not been elucidated. This is ascribed to the absence of effective methods for real-time and in situ measurement of lysosomal MDA within living brains. Herein, a fluorescence imaging agent, Lyso-MCBH, was constructed to specifically monitor lysosomal MDA by entering the brain and targeting the lysosome. Erupting the lysosomal MDA level in living brains of mice under CIRI was first observed using Lyso-MCBH. Excessive lysosomal MDA was found to affect the efficacy of vitamin B12 by blocking the transport of vitamin B12 from the lysosome to the cytoplasm. More importantly, the expression and function of the vitamin B12 transporter LMBD1 were proved to be associated with excessive lysosomal MDA. Altogether, the revealing of the lysosomal MDA-LMBD1 axis provides a cogent interpretation of the inefficacy of vitamin B12 in CIRI, which could be a prospective therapeutic target.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Mice , Vitamin B 12/pharmacology , Vitamin B 12/metabolism , Malondialdehyde/metabolism , Endothelial Cells/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Lysosomes/metabolism , Reperfusion Injury/drug therapy , Vitamins/metabolism , Homocysteine/metabolism
12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 770-777, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37666768

ABSTRACT

This research aims to investigate the encapsulation and controlled release effect of the newly developed self-assembling peptide R-LIFE-1 on exosomes. The gelling ability and morphological structure of the chiral self-assembling peptide (CSAP) hydrogel were examined using advanced imaging techniques, including atomic force microscopy, transmission electron microscopy, and cryo-scanning electron microscopy. The biocompatibility of the CSAP hydrogel was assessed through optical microscopy and fluorescent staining. Exosomes were isolated via ultrafiltration, and their quality was evaluated using Western blot analysis, nanoparticle tracking analysis, and transmission electron microscopy. The controlled release effect of the CSAP hydrogel on exosomes was quantitatively analyzed using laser confocal microscopy and a BCA assay kit. The results revealed that the self-assembling peptide R-LIFE-1 exhibited spontaneous assembly in the presence of various ions, leading to the formation of nanofibers. These nanofibers were cross-linked, giving rise to a robust nanofiber network structure, which further underwent cross-linking to generate a laminated membrane structure. The nanofibers possessed a large surface area, allowing them to encapsulate a substantial number of water molecules, thereby forming a hydrogel material with high water content. This hydrogel served as a stable spatial scaffold and loading matrix for the three-dimensional culture of cells, as well as the encapsulation and controlled release of exosomes. Importantly, R-LIFE-1 demonstrated excellent biocompatibility, preserving the growth of cells and the biological activity of exosomes. It rapidly formed a three-dimensional network scaffold, enabling the stable loading of cells and exosomes, while exhibiting favorable biocompatibility and reduced cytotoxicity. In conclusion, the findings of this study support the notion that R-LIFE-1 holds significant promise as an ideal tissue engineering material for tissue repair applications.


Subject(s)
Exosomes , Delayed-Action Preparations , Hydrogels , Microscopy, Electron, Scanning , Peptides
13.
Adv Healthc Mater ; 12(32): e2301724, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37767893

ABSTRACT

The bone matrix has distinct architecture and biochemistry which present a barrier to synthesizing bone-mimetic regenerative scaffolds. To mimic the natural structures and components of bone, biomimetic structural decellularized extracellular matrix (ECM)/regenerated silk fibroin (RSF) scaffolds incorporated with magnetic nanoparticles (MNP) are prepared using a facile synthetic methodology. The ECM/RSF/MNP scaffold is a hierarchically organized and interconnected porous structure with silk fibroin twined on the collagen nanofibers. The scaffold demonstrates saturation magnetization due to the presence of MNP, along with good cytocompatibility. Moreover, the ß-sheet crystalline domain of RSF and the chelated MNP could mimic the deposition of hydroxyapatite and enhance compressive modulus of the scaffold by ≈20%. The results indicate that an external static magnetic field (SMF) with a magnetic responsive scaffold effectively promotes cell migration, osteogenic differentiation, neogenesis of endotheliocytes in vitro, and new bone formation in a critical-size femur defect rat model. RNA sequencing reveals that the molecular mechanisms underlying this osteogenic effect involve calsequestrin-2-mediated Ca2+ release from the endoplasmic reticulum to activate Ca2+ /calmodulin/calmodulin-dependent kinase II signaling axis. Collectively, bionic magnetic scaffolds with SMF stimulation provide a potent strategy for bone regeneration through internal structural cues, biochemical composition, and external physical stimulation on intracellular Ca2+ homeostasis.


Subject(s)
Fibroins , Tissue Scaffolds , Rats , Animals , Tissue Scaffolds/chemistry , Fibroins/chemistry , Osteogenesis , Calcium , Biomimetics , Calmodulin , Bone Regeneration/physiology , Magnetic Phenomena , Tissue Engineering/methods
14.
Chem Biol Drug Des ; 102(2): 316-331, 2023 08.
Article in English | MEDLINE | ID: mdl-37156601

ABSTRACT

Celastrol has been identified as a potential candidate for anticancer drug development. In this study, 28 novel celastrol derivatives with C-6 sulfhydryl substitution and 20-substitution were designed and synthesized, and their antiproliferative activity against human cancer cells and non-malignant human cells was evaluated, with cisplatin and celastrol being used as controls. The results showed that most of the derivatives had enhanced in vitro anticancer activity compared to the parent compound celastrol. Specifically, derivative 2f demonstrated the most potent inhibitory potential and selectivity against HOS with an IC50 value of 0.82 µM. Our study provides new insights into the structure-activity relationship of celastrol and suggests that compound 2f may be a promising drug candidate for the treatment of osteosarcoma.


Subject(s)
Antineoplastic Agents , Triterpenes , Humans , Molecular Structure , Triterpenes/pharmacology , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Cell Proliferation , Dose-Response Relationship, Drug , Cell Line, Tumor , Drug Design
15.
Environ Sci Pollut Res Int ; 30(20): 59048-59061, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37002520

ABSTRACT

Materials made from coal gangue (CGEr) can be used for ecological restoration in mining areas. This paper comprehensively analyzed the influence of the freeze-thaw process on the performance of CGEr and the environmental risk of heavy metals. The safety of CGEr was assessed by sediment quality guidelines (SQGs), geological accumulation index (Igeo), potential ecological risk index (RI), and risk assessment code (RAC). The freeze-thaw process reduced the performance of CGEr, that the water retention of CGEr decreased from 1.07 (g water/g soil) to 0.78 (g water/g soil), and the loss rate of soil and water increased from 1.07 to 4.30%. The freeze-thaw process reduced the ecological risk of CGEr, the Igeo of Cd and Zn decreased from 1.14 to 0.13 and 0.53 to 0.3, respectively, and the RI of Cd decreased by 50% from 0.297 to 0.147. Reaction experiments and correlation analysis showed that the freeze-thaw process destroyed the pore structure of the material, resulting in the degradation of its properties. Water molecules undergo phase transformation during freeze-thaw, and particles were squeezed by ice crystals to form agglomerates. The formation of granular aggregates resulted in the enrichment of heavy metals in the aggregates. Influenced by the freeze-thaw process, specific functional groups such as -OH were more exposed on the surface of the material, which affected the occurrence form of heavy metals and thus reduced the potential ecological risk of the material. This study provides an important basis for the better application of ecological restoration materials of CGEr.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium , Coal , Soil Pollutants/analysis , Metals, Heavy/analysis , Risk Assessment , Soil/chemistry , Water , Environmental Monitoring/methods , China
16.
BJPsych Open ; 9(1): e17, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36651060

ABSTRACT

BACKGROUND: Individuals with gender dysphoria display an incongruence between birth-assigned gender and gender expression. However, there is no existing Chinese measure for gender dysphoria. AIMS: This study aims to validate the Utrecht Gender Dysphoria Scale - Gender Spectrum (UGDS-GS) in a Chinese population, and compare the psychometric properties of the UGDS-GS with one frequently used scale for gender dysphoria measurement, the Gender Identity/Gender Dysphoria Questionnaire for Adolescents and Adults (GIDYQ-AA). METHOD: A total of 2646 Chinese participants were recruited. The following information was collected: sociodemographic variables, gender identity, sexual orientation, gender dysphoria measured by the UGDS-GS and the GIDYQ-AA, anxiety, depression and suicide assessment. Principal component analyses and confirmatory factor analysis (CFA) were conducted to test the fitness of the model. Discriminant validity was tested with one-way analysis of variance. RESULTS: The UGDS-GS showed good psychometric properties, with the GIDYQ-AA demonstrating slightly better psychometric properties than the UGDS-GS. UGDS-GS also showed strong internal consistency (Cronbach's α = 0.89), and good convergent validity and criterion validity. Exploratory factor analysis showed a one-factor structure (Kaiser-Meyer-Olkin test, 0.93; χ2 = 13 342.50; d.f. = 153; P < 0.001). The UGDS-GS was positively associated with anxiety symptoms, depressive symptoms, suicidal ideation, attempted suicide and self-harm. We also found the results were robust in different samples. CONCLUSIONS: The validated UGDS-GS can significantly stimulate and promote gender dysphoria assessment in Chinese populations, allowing for assessment in a more diverse subset of gender minorities.

17.
Bioorg Chem ; 130: 106224, 2023 01.
Article in English | MEDLINE | ID: mdl-36332315

ABSTRACT

Cholinesterase and monoamine oxidase are potential targets for the therapy of Alzheimer's disease. A series of novel AP2238-clorgiline hybrids as multi-target agents were designed, synthesized and investigated in vitro for their inhibition of cholinesterases and monoamine oxidases. Many compounds displayed balanced and good inhibitory activity against AChE, BuChE and MAO-B with an obvious selective inhibitory effect on MAO-B. Among them, Compound 5l showed the most balanced potency to inhibit ChEs (eeAChE: IC50 = 4.03 ± 0.03 µM, eqBuChE: IC50 = 5.64 ± 0.53 µM; hAChE: IC50 = 8.30 ± 0.04 µM, hBuChE: IC50 = 1.91 ± 0.06 µM) and hMAO-B (IC50 = 3.29 ± 0.09 µM). Molecular modeling and kinetic studies showed that 5l was a mixed inhibitor for both AChE and BuChE, and a competitive MAO-B inhibitor. Compound 5l exhibited no toxicity to PC12 and BV-2 cells at 12.5 µM and no acute toxicity at a dosage of 2500 mg/kg. Moreover, 5l can improve the memory function of mice with scopolamine-induced memory impairment and have an excellent ability to cross the blood-brain barrier. Overall, these findings suggested that compound 5l could be deemed as a promising, balanced multi-target drug candidate against Alzheimer's disease.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/drug therapy , Clorgyline/therapeutic use , Cholinesterase Inhibitors , Kinetics , Drug Design , Monoamine Oxidase Inhibitors , Monoamine Oxidase/metabolism , Cholinesterases/metabolism , Acetylcholinesterase/metabolism , Structure-Activity Relationship
18.
Bioact Mater ; 22: 1-17, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36203961

ABSTRACT

The electrical microenvironment plays an important role in bone repair. However, the underlying mechanism by which electrical stimulation (ES) promotes bone regeneration remains unclear, limiting the design of bone microenvironment-specific electroactive materials. Herein, by simple co-incubation in aqueous suspensions at physiological temperatures, biocompatible regenerated silk fibroin (RSF) is found to assemble into nanofibrils with a ß-sheet structure on MXene nanosheets, which has been reported to inhibit the restacking and oxidation of MXene. An electroactive hydrogel based on RSF and bioencapsulated MXene is thus prepared to promote efficient bone regeneration. This MXene/RSF hydrogel also acts as a piezoresistive pressure transducer, which can potentially be utilized to monitor the electrophysiological microenvironment. RNA sequencing is performed to explore the underlying mechanisms, which can activate Ca2+/CALM signaling in favor of the direct osteogenesis process. ES is found to facilitate indirect osteogenesis by promoting the polarization of M2 macrophages, as well as stimulating the neogenesis and migration of endotheliocytes. Consistent improvements in bone regeneration and angiogenesis are observed with MXene/RSF hydrogels under ES in vivo. Collectively, the MXene/RSF hydrogel provides a distinctive and promising strategy for promoting direct osteogenesis, regulating immune microenvironment and neovascularization under ES, leading to re-establish electrical microenvironment for bone regeneration.

19.
Gels ; 8(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36547294

ABSTRACT

Patient-derived organoid (PDO) models have been widely used in precision medicine. The inability to standardize organoid creation in pre-clinical models has become apparent. The common mouse-derived extracellular matrix can no longer meet the requirements for the establishment of PDO models. Therefore, in order to develop effective methods for 3D cultures of organoids, we designed a self-assembling peptide, namely DRF3, which can be self-assembled into ordered fibrous scaffold structures. Here, we used the co-assembly of self-assembling peptide (SAP) and collagen type I, fibronectin, and laminin (SAP-Matrix) to co-simulate the extracellular matrix, which significantly reduced the culture time of PDO, improved the culture efficiency, and increased the self-assembly ability of cells. Compared with the results from the 2D cell line, the PDO showed a more significant expression of cancer-related genes. During organoid self-assembly, the expression of cancer-related genes is increased. These findings provide a theoretical basis for the establishment of precision molecular modeling platforms in the future.

20.
Anal Chem ; 94(43): 14965-14973, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36256865

ABSTRACT

Carbonyl stress caused by reactive carbonyl species (RCS) is closely related to various brain diseases. As the highly reactive, highly toxic, and lipophilic RCS, malondialdehyde (MDA) and formaldehyde (FA) could easily cross the blood-brain barrier (BBB) and induce protein dysfunction or cross-linking in the brain. Do MDA and FA coordinately regulate the physio-pathological processes of the brain? To answer the question, first of all, powerful identification and sensing tools are needed. However, competent probes for simultaneously analyzing MDA and FA in living brains are lacking, which originates from the following three challenges: (1) MDA and FA are difficult to distinguish due to their great similarity in structure and reactivity; (2) to achieve simultaneous and discriminable imaging, same excitation and different emissions are preferable; and (3) the detection of MDA and FA in living brains require the materials to pass through the BBB. Thus, we created a two-photon fluorescent agent, TFCH, for MDA/FA. The hydrazine group in TFCH could successfully differentiate MDA/FA at 440/510 nm under same excitation. Moreover, the lipophilic trifluoromethyl group (-CF3) in TFCH prompts it to traverse the BBB, thereby realizing the coinstantaneous visualization of MDA and FA in the living brain. Using TFCH, we observed the excessive production of MDA and FA in living PC12 cells under carbonyl stress and oxidative stress. Notably, for the first time, two-photon fluorescence imaging indicated the synchronous increase of MDA and FA in living brains of mice with depression. Altogether, this work provides a promising tool for revealing the carbonyl stress-related molecular mechanism involved in brain diseases.


Subject(s)
Brain Diseases , Formaldehyde , Rats , Animals , Mice , Malondialdehyde , Formaldehyde/chemistry , Fluorescent Dyes/chemistry , Brain/diagnostic imaging , Brain/metabolism , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...